

CHARACTERIZATIONS OF A NEW POLYMER-NANOCOMPOSITE PROPPANT FROM AGRO-WASTE PRODUCTS FOR HYDRAULIC FRACTURING OPERATIONS

By Mohammed Mostafa Sayed Mohammed Kandil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

CHARACTERIZATIONS OF A NEW POLYMER-NANOCOMPOSITE PROPPANT FROM AGRO-WASTE PRODUCTS FOR HYDRAULIC FRACTURING OPERATIONS

By

Mohammed Mostafa Sayed Mohammed Kandil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Petroleum Engineering**

Under Supervision of

Prof. Dr. Abdulaziz M. Abdulaziz Prof. Dr. Ahmed Mahmoud Yousef

Associate Prof. of Petroleum Engineering
Department of Mining, Petroleum,
and Metallurgical Engineering
Faculty of Engineering,
Cairo University

Prof. of Polymers, National Research Center, Dokki, Cairo, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2020

CHARACTERIZATIONS OF A NEW POLYMER-NANOCOMPOSITE PROPPANT FROM AGRO-WASTE PRODUCTS FOR HYDRAULIC FRACTURING OPERATIONS

By

Mohammed Mostafa Sayed Mohammed Kandil

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Petroleum Engineering

Approved by the	
Examining Committee:	
Prof. Dr. Abdulaziz M. Abdulaziz	Thesis Main Advisor
Associate Professor of Petroleum Engin	neering, Cairo University
Prof. Dr. Ahmed Mahmoud Yousef	Advisor
Prof. of Polymers, National Research C	enter, Dokki, Cairo, Egypt
Prof. Dr. Abdel Sattar A. Dahab	Internal Examiner
Professor of Petroleum Engineering, Ca	airo University, Egypt
Dr. Rehab Moatasem El-Maghraby	External Examiner
Associate Professor of Chemical Engin	eering, Suez University, Egypt

Engineer's Name: Mohammed Mostafa Sayed Mohammed Kandil

Date of Birth: 11/5/1991 **Nationality:** Egyptian

E-mail: mohammed.kandil@khalda-eg.com

Phone: 01210039492

Address: El-Nile St. Sohag Awal, Sohag

Registration Date: 1/10/2013
Awarding Date: ---/---/ 2020
Degree: Master of Science
Department: Petroleum Engineering

Supervisors:

Ass. Prof. Dr. Abdulaziz Mohamed Abdulaziz

Prof. Dr. Ahmed Mahmoud Yousef

Examiners:

Ass. Prof. Dr. Abdulaziz M. Abdulaziz (Thesis Main Advisor)

Prof. Dr. Ahmed Mahmoud Yousef (Advisor)
Prof. of Polymers, National Research Center,

Dokki, Cairo, Egypt

Prof. Dr. Abdel Sattar A. Dahab (Internal Examiner)
Dr. Rehab Moatasem El-Maghraby (External Examiner)

Associate Professor of Chemical Engineering,

Suez University, Egypt

Title of Thesis:

Characterizations of A New Polymer-Nanocomposite Proppant from Agro-Waste Products for Hydraulic Fracturing Operations

Kev Words:

Hydraulic fracturing, Polymer Nanocomposite, Agro-waste recycling, Rice Husk, Ultralight weight Proppant.

Summary:

This research includes an experimental study on the characteristics of a new proppant manufactured from an agro-waste, the rice husk, to act as a possible propping agent in hydraulic fracturing treatment. Polymer Nano-composite particles were added to the rice husk before using in the experiment. In this research, the physical and mechanical properties of the new proppant are studied and a fracture conductivity test is concluded to characterize the performance of the new proppant material. The results from the experiment are compared to the widely known walnut hull proppant (ULW-1.25) and Chemically Modified and Reinforced Composite Proppant (CMRCP). In addition the new polymer nanocomposite proppant characteristics are compared to the established ISO/API standards. These results may lead to a consequent enhancement towards high strength Nanocomposite proppants.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Mohammed Mostafa Sayed Mohammed Kandil Date:

Signature:

DEDICATION

To
My Parents
and
My Wife

ACKNOWLEDGMENT

In the name of Allah, the most beneficent, the most merciful.

I would like to express my great appreciation and deep gratitude to Dr. Abdulaziz Mohamed Abdulaziz, for the infinite assistance, endless support, sincere advises and honest guidance he gave for the achievement of this work in spite of his numerous duties.

I am grateful to Dr. Rehab El-Maghraby, Suez Canal University and Prof. Dr. Ahmed Youssef, The National Research Center at Dokki for their effective role in the accomplishment of the work. Also I would like to express my great appreciation to Dr. Mohamed El-Karmoty, Rock Mechanics Lab, Cairo University and Dr. Adel Mady, University of Banha for their great role in collecting and cutting the core sample used in this study experiment. I also would like to extend my sincere thanks and respect to all the professors in the Petroleum Engineering Department at Suze University who taught me in all sincerity and love to get my Bachelor of Sciences in Petroleum Engineering. Also I would like to extend my sincere thanks and respect to the professors in the Petroleum Engineering Department at Cairo University who kept on giving me everything new in the oil industry and helped me to get the master's degree. Finally, I would like to express my thanks and appreciation to my family especially, my mother and my wife for the great help and support.

Table of Contents

Disclaimer	I
Dedication	II
Acknowledgment	III
Table of Contents	
List of Tables	
List of Figures	
Nomenclatures	
Abstract	
Austract	ΛI
Chapter 1. Introduction	1
Chapter 1: Introduction	1
Chapter 2. Litareture Survey	5
Chapter 2: Literature Survey	
2-1 History of hydraulic fracturing treatment	
2-2 The mechanics of hydraulic fracturing techniques	
2-2-1 Basic modeling of fractures	
2-2-2 Proppant placement.	
2-3 Fracturing fluids	
2-3-1 History	
2-3-2 Fracturing fluids types	
2-4 Proppant	
2-4-1 Types of Proppants	
2-5 Nanotechnology in hydraulic fracturing	
2-5-1 Practuring fluids	
2-3-2 I Toppant	32
Chapter 3: Statement of the problem	35
3-1 Statement of the problem	
3-2 Study Objective	
5-2 Study Objective	33
Chapter 4. Degearch Methodology	27
Chapter 4: Research Methodology	
4-1 Testing of physical properties	
4-1-1 Samples preparation and grain size	
4-1-2 Grain shape	
4-1-3 Bulk density	
4-1-4 Specific gravity	
4-2 Testing of mechanical properties	
4-2-1 Turbidity test	
4-2-2 Acid solubility	
4-3 Fracture conductivity	
4-3-2 Fracture conductivity model components	
4-3-2-1 Oligocene sandstone	
T J 4-1 OHEOCORC SARUSIONC	T4

4-3-2-2 The core holder	43
4-3-2-3 The back pressure regulator	44
4-3-2-4 The confining pressure pump	
4-3-2-5 The constant flow pump	
Chapter 5: Results & Discussion	47
5-1 Physical properties	47
5-1-1 Sieve analysis	47
5-1-2 Grain shape	47
5-1-3 Bulk density	48
5-1-4 Specific gravity	48
5-2 Mechanical properties	49
5-2-1 Turbidity test	49
5-2-2 Acid solubility test	49
5-3 Results of fracture conductivity	49
5-4 Economic comparison	56
Chapter 6: Conclusions and Recommendations	59
6-1 Conclusions	59
6-2 Recommendations	59
References	61

List of Tables

Table 2.1: Qualitative Fluid Systems Selection Chart [39]
Table 2.2: Alumina content for ceramic proppant categories [46]
Table 2.3: Comparison of different types of proppants based on their specific gravity [41]
Table 5.1: The results of the bulk density test
Table 5.2: The results obtained from the fracture conductivity test
Table 5.3: The calculated results of fracture conductivity for each closure pressure51
Table 5.4: The average conductivity value of the five flow rates for each closure pressure
Table 5.5: Comparison of fracture conductivity of the new polymer nanocomposite proppant with other proppants (extracted from Reference [65])
Table 5.6: Comparison of the maximum acceptable price of the new polymer nanocomposite proppant with other proppants (extracted from Reference [80]) 57

List of Figures

Fig. 2.1: Back-lit side view of acid-etched fracture in a lab core [12]6
Fig. 2.2: The first experimental fracture treatment by Stanolind Oil in 1947 [14] 8
Fig. 2.3: The conductivity tiers [42]
Fig. 2.4: Proppant consumption for fracturing operations in United States [41] 24
Fig. 2.5: Worldwide gravel (silica) and sand production [41]
Fig. 2.6: Closure pressures of different types of proppants at which conductivity of about 1750 md-ft can be maintained [46]
Fig. 2.7: Amidoamine VES Viscosity variation after adding ZnO nanomaterials [51]
Fig. 2.8: Temperature effect on the viscosity of guar solution with 0.24% by weight SiO ₂ nanoparticles [52]
Fig. 2.9: Nanoparticle addition effect on CMC of AOS surfactant [53]31
Fig. 4.1: An image of the selected sample for the examination
Fig. 4.2: Hach 2100N turbidity meter for laboratory use
Fig. 4.3: The fracture conductivity cell
Fig. 4.4: Oligocene sandstone (from Cairo - Elsokhna desert road) core sample platens
Fig. 4.5: A schematic illustration for the laboratory setup
Fig. 4.6: The Oligocene sandstone platens with proppant before performing the conductivity test
Fig. 4.7: Hassler type core holder- RCH series [68]
Fig. 4.8: Swagelok® back-pressure, spring-loaded regulators [69]
Fig. 4.9: 260 HP high pressure syringe pump [70]
Fig. 4.10: High-Flow dual piston pumps [71]
Fig. 5.1: Snapped image of the proppant particles shape under microscope 47
Fig. 5.2: (a) the result obtained from the turbidity test (b) the sample subjected to the test
Fig. 5.3: An image of the core sample after finishing the experiment
Fig. 5.4: An image of the proppant after finishing the experiment
Fig. 5.5: Fracture conductivity comparison between CMRCP, this study, and ULW-1.25
Fig. 5.6: Fracture conductivity comparisons between the present study, Walnut shell, Palm Kernel shell, and Coconut shell

Nomenclatures

IOR: Improved oil recovery

RCP: Resin coated proppant

CP: Conventional proppant

ULW: Ultra-Lightweight

CMRCP: Chemically Modified and Reinforced Composite Proppant

ISO: International Organization for Standardization

API: American Petroleum Institute

Tscf: Trillions of standard cubic feet

NG: Nitroglycerine

ft.: Foot

Howco: Halliburton Oil Well Company

USD: United States Dollar

lbm: Pounds Mass

HCl: Hydrochloric acid

°**F:** Degree Fahrenheit

R: Radius

V: Fracture volume

P_{net}: The net pressure

E: Young's modulus

v: Poisson's ratio

 γ_F : Specific surface energy of the fracture

qi: Injection rate

t: Time

hf: Height of the fracture

w: Average fracture width

 μ_{slurry} : Proppant-laden slurry viscosity

 μ_{base} : Base carrying fluid viscosity

 μ_r : Viscosity ratio

 f_v : Fraction of the proppant volume

 $\mathbf{f}_{\mathbf{vM}}$: Maximum fraction of mobile slurry.

TSO: Tip-screen out

 ρ_{sol} : Density of the solid particles

 ρ_f : Density of the fluid

d_{sol}: Diameter of the solid particles.

usol: Particle velocity

PI: Productivity index

TEA: Tri-Ethanol Amine

WRA: Water recovery agent

bpm: Pound per Minute

HEC: Hydroxyethyl cellulose

HPG: Hydroxypropyl guar

CO₂: Carbon dioxide

N2: Nitrogen

Psi: Pound per square inch

USA: United States of America

Mt: Metric tons

USGS: United States Geological Survey

Tg: Glass transmission temperature

HDC: High density ceramics

IDC: Intermediate density ceramics

LWC: Lightweight ceramics

UHSP: Ultra-High-Strength proppant

SG: Specific gravity

MD-ft: Millidarcy- foot

nm: nanometer

VES: Viscoelastic surfactant

CMC: Critical micelle concentration

ZnO: Zinc oxide

SiO2: Silicon dioxide

Fe₂O₃: Iron (III) oxide (Hematite)

AOS: Alfa olefin sulfonate

MgAl₂O₄: Magnesium aluminate (spinel)

m²/g: Square meter per gram

RP: Recommended Practices

ml: Milliliter

g/cm³: gram per cubic centimeter

NTU: Nephelometric Turbidity Units

HF: Hydrofluoric acid

KCl: Potassium chloride

K: Fracture permeability

W_f: Fracture width

KW_f: Proppant pack conductivity

Q: Flow rate

L: Length between pressure ports

W: Cell width

 ΔP : Pressure drop

ml/min: Milliliter per minute

cm: Centimeter

ABSTRACT

Well Stimulation is considered the most effective technique of improved oil recovery (IOR). Stimulation technique comprises several operations to enhance and maintain the productivity of oil and gas wells. Hydraulic fracturing is the main operation to stimulate wells and starts with pumping the fracturing fluids into the well to raise the pressure above fracturing pressure of the formation. Proppant is an essential component of the injected slurry; and comprises any non-liquid phase utilized to provide support for the induced fracture to keep it open. Once the fracture is induced, slurry with proppant is injected to keep flow path open for reservoir fluids towards the wellbore at a higher rate. Proppants can be ceramics, sand, or resin coated proppant (RCP), which are known as conventional proppant (CP).

Due to the high expense of the conventional proppant types that may reach up to 40% of the stimulation job, the need for new proppants has become a very important topic of research. Agro-waste such as rice husk is renewable resources and can be used as propping agent in hydraulic fracturing treatment; however it is not yet widely studied. This research includes an experimental study on the characteristics of a proppant prepared from the rice husk as an agro-waste, to act as a possible propping agent in hydraulic fracturing. Polymer Nano-composite materials were added to the rice husk before conducting the experiment. In this study, the physical and mechanical properties are investigated and a fracture conductivity test is implemented to characterize the efficiency of the new proppant material. The characteristics envisaged are grain shape and size, bulk density, specific gravity, turbidity and acid solubility. The results from the experiments are compared to the commonly known walnut hull proppant (ULW-1.25) and Chemically Modified and Reinforced Composite Proppant (CMRCP). The new polymer nanocomposite proppant showed promising results according to the established ISO/API standards. This research provides technical information on the new agro-waste renewable resource to confirm its strength when subjected to high closure stresses; which has not been mentioned in the literature. These results may lead to a consequent improvement towards high strength Nanocomposite proppants for applications in hydraulic fracturing operations and other petroleum engineering applications.