

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Galactose on Proteinuria in Pediatric Steroid Resistant Nephrotic Syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Presented by

Mohammed Abdel-Hamid Elshenawy

MB, BCH, (2013), Faculty of medicine Elmonofia university

Under Supervision of

Prof.Dr / Ihab Zaki El-Hakim

Professor of Pediatrics
Faculty of Medicine -Ain Shams University

Dr. Ahmed Hussein Hassan

Lecturer of Pediatrics
Faculty of Medicine -Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah** The Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Ihab Zaki El-Hakim** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Dr. Ahmed Hussein Hassan**Lecturer of Pediatrics, Faculty of Medicine, Ain Shams
University, for his great help, outstanding support, active
participation and guidance.

I would like to express my cordial thanks to my wife and all my family for their support till this work was completed.

Mohammed Abdel-hamid Elshenawy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	6
List of Abbreviations	iv
Introduction	i
Aim of the Work	12
Review of Literature	
• Chapter (1): Nephrotic Syndrome	13
Chapter (2): Galactose	60
Patients and Methods	59
Results	64
Discussion	81
Summary	85
Conclusion and Recommendations	88
References	90
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Causes of childhood nephrotic syndrome	e: 16
Table (2):	Underlying Renal Pathology in Nephro	
, ,	Syndrome in Childhood	
Table (3):	Some lipid abnormalities in the nephro	tic
	syndrome	29
Table (4):	Some definitions	46
Table (5):	Timing of improvement after intake	of
	galactose	72
Table (6):	Demographic data, laboratory data a	
	oedema at baseline among the studi	led
	patients:	
Table (7):	Follow up of serum albumin level amo	•
	the studied patients:	
Table (8):	Follow up of 24 hours urinary protei	
	among the studied patients:	
Table (9):	Follow up of serum creatinine among t	
	studied patients:	
Table (10):	Follow up of weight (kg) among t	
	studied patients	
Table (11):	Follow up odema among the studi	
	patients:	82

List of Figures

Fig. No.	Title Page No.
Figure (1):	Histopathology of Minimal change disease 19
Figure (2):	Histopathology of Focal segmental glomerulosclerosis
Figure (3):	Histopathology of mesangial proliferation 21
Figure (4):	Histopathology of Membranous nephropathy
Figure (5):	Electron micrograph of the components of the glomerular filtration barrier
Figure (6):	Effacement of podocyte foot process
Figure (7):	Pathway of galactose metabolism 64
Figure (8):	D-galactose sugar used in the study67
Figure (9):	Chart of case improvement71
Figure (10):	Mean levels of serum albumin of studied patients
Figure (11):	Mean levels of 24 hours urinary proteines of studied patients
Figure (12):	Mean levels of 24 serum cratinine of studied patients
Figure (13):	Mean levels of weight of studied patients 81

List of Abbreviations

Abb.	Meaning
ACE	Angiotensin-converting enzyme
ARBS	Angiotensin receptor blockers
ARF	Acute renal failure
CS	Corticosteroids
CVT	Cerebrovascular thrombosis
DPGN	Diffuse proliferative glomeruloneohritis
EPO	Erythropoietin
FR	Frequent relapse
FSGS	Focal segmental glomerulonephritis
FSPF	Focal sclerosis permeability factor
G-1P	Glucose -1-phosphate
GBM	Glomerular basement membrane
GFR	Glomerular filtration rate
HDL	high density lipoprotein
INS	Idiopathic nephrotic syndrome
LDL	Low density lipoprotein
MCD	Minimal change disease
MCNS	Minimal change nephrotic syndrome
MGN	Membranous glomerulonephritis

List of Abbreviations cont...

Abb. Meaning

MMF Mycophenolate mofetil

MN Membranous nephropathy

MPGN Membranoproliferative glomerulonephritis

NS Nephrotic syndrome

PTE Pulmonary thrombo embolism

RAS Rennin angiotensin system

RNS Reactive nitrogen species

ROS Reactive oxygen species

SDNS Steroid dependant nephrotic syndrome

SNI Calcineurin inhibitors

SRNS Steroid resistant nephrotic syndrome

SSNS Steroid sensitive nephrotic syndrome

TBG Thyroid binding globulin

TNF Tumor necrotic factor

UDP Uridine diphosphate

VPF Vascular permeability factor

INTRODUCTION

ephrotic syndrome (NS) is primarily a pediatric disorder and is fifteen times more common in children than adults. The vast majority of affected children will have steroid sensitive minimal change disease (SSNS). The characteristic features of NS are heavy proteinuria >40 mg/m²/hr, hypoalbuminemia (<2.5 g/dL), edema and hyperlipidemia (*Vogt and Avner, 2011*).

The majority of children who present with idiopathic nephrotic syndrome (NS) have minimal change disease (MCD), which is generally responsive to steroid therapy. As a result, empirical steroid therapy is given to most children who present with idiopathic NS (*Trachtman et al.*, 2013).

However, approximately 10 to 20 percent of patients will fail to respond to initial steroid treatment. Most children with steroid-resistant nephrotic syndrome (SRNS), the underlying cause is not known. However, advances in molecular genetics of glomerular diseases have shown single gene defects that affect glomerular podocyte differentiation and function are responsible for a quarter to a third of all pediatric cases of isolated and syndromic SRNS in many parts of the world (Saleem et al., 2013).

The International Study of Kidney Disease in Children (ISKDC) defined steroid resistant as a minimum exposure of 8 weeks of prednisone with 60 mg/m²/day; or 2 mg/kg/day for

4 weeks followed by 40 mg/m² or 1.5 mg/kg on alternate days for 4 weeks. The minimum duration of prednisone required to define resistance is unresolved. A kidney biopsy is recommended to evaluate SRNS to determine the underlying pathology, which may dictate therapy (*Colquitt et al.*, 2017).

Idiopathic steroid-resistant nephrotic syndrome (SRNS) in children is characterized by a high risk of progression to end-stage renal disease, post-transplant disease recurrence (Sgambat et al., 2013) and an overall increased risk of mortality. Approximately 80 % of children with idiopathic SRNS show focal segmental glomerulosclerosis (FSGS) on renal biopsy, whereas the remaining may show minimal change or mesangial proliferation in the early stages. Current therapies for SRNS, including cyclosporine, tacrolimus, mycophenolate Mofetil and rituximab, may induce partial or complete remission in 25–50 % of children. However, these therapies confer a risk of immunosuppression nephrotoxicity over time. Thus, there is an urgent need for investigating novel and non-toxic therapies to treat this disease (Greenbaum et al., 2012).

One or more proteinuria-inducing circulating factors have been identified in children with idiopathic SRNS. This notion is further supported by the rapid recurrence of proteinuria after renal transplant and response to plasmapheresis in some patients. Focal sclerosis permeability factor (FSPF) is one of such circulating factors identified in the

serum of patients with idiopathic SRNS. Galactose bound to FSPF with high affinity and inactivated and decreased FSPF activity in vitro, but it did not improve proteinuria in a patient post-transplant **FSGS** recurrence .The proposed mechanism is the presence of galactose-binding sites on FSPF which interact with galactose of the glomerular glycocalyx to induce proteinuria. Free galactose supplementation may block the FSPF binding sites, thus rendering it inactive and promoting of the FSPF-galactose clearance complex via asialoglycoprotein receptors in the liver. (Greenbaum et al., 2012).

Another case report described partial remission during treatment with oral galactose in two pediatric SRNS patients. Since no prospective data are available, we had investigated the effect of oral galactose therapy on FSPF and the clinical response in children with idiopathic SRNS (*De Smet et al.*, 2009).

AIM OF THE WORK

To study the effectiveness and safety of galactose as a possible therapeutic modality of treatment on steroid resistant nephrotic syndrome in pediatric patients.