

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

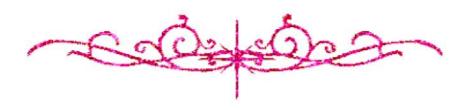
قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل



Faculty of Education Mathematics Department

A Study of some Topological Structures and some of their Applications

Submitted to:

The Department of Mathematics, Faculty of Education, Ain Shams University

Thesis

Submitted in Partial Fulfillment of the Requirements of the Doctor's Philosophy
Degree in Teacher's Preparation in Science

(Pure Mathematics)

 $\mathbf{B}\mathbf{y}$

Mahmoud Raafat Mahmoud Soliman

Mathematics Lecturer Assistant at, Mathematics Department, Faculty of Education, Ain Shams University

Supervised by

Prof. Ali Kandil Saad

Professor of Pure Mathematics Faculty of Science Helwan University Prof. Sobhy Ahmed Aly El-Sheikh

Professor of Pure Mathematics Faculty of Education Ain Shams University

Dr. Mona Hosny Abd El Khalek

Lecturer of Pure Mathematics Faculty of Education Ain Shams University

(2020)

Faculty of Education Mathematics Department

Candidate: Mahmoud Raafat Mahmoud Soliman

<u>Thesis Title</u>: A Study of some Topological Structures and some of their Applications

Degree: Doctor Philosophy for Teacher's Preparation in Science

(Pure Mathematics)

Supervisors:

No.	Name	Profession	Signature
1.	Prof. Ali Kandil Saad	Professor of Pure Mathematics, Mathematics Department, Faculty of Science, Helwan University.	
2.	Prof. Sobhy Ahmed Aly El-Sheikh	Professor of Pure Mathematics, Mathematics Department, Faculty of Education, Ain Shams University.	
3.	Dr. Mona Hosny Abd El Khalek	Lecturer of Pure Mathematics, Mathematics Department, Faculty of Education, Ain Shams University.	

Acknowledgements

First of all gratitude and thanks to gracious **Allah** who always helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge and who is the teacher of mankind. This thesis would not be possible without the support of many individuals, to whom I would like to express my gratitude. First and foremost, I would like to thank my supervisors committee who are:

Prof. Ali Kandil Saad, Professor of Pure Mathematics, Faculty of Science, Helwan University, who's the great commander for the march and that who helped me since the first step inside the scientific studies through his high-quality efforts, consistent help and limitless help, limitless patience, endless mercy, several discussions, valuable comments and feedback and his directives with all respect and appreciation. His trust and support in delegation have instilled great confidence in me and were key factors in my development as a person and as a researcher.

Prof. Sobhy Ahmed Aly El Sheikh, Professor of Pure Mathematics, Faculty of Education, Ain Shams University, who helped me on the first step in this study through his suggestions for the research problems, valuable instructions, guidance and continuous follow up on this study. He offered me much of his precious time and provided me with his wisdom and knowledge through many discussions we had. He taught me many things not only on the scientific side, but also in practical and personal life. His efforts during revision of this thesis is an invaluable.

Dr. Mona Hosny Abd El Khalek, Lecturer of Pure Mathematics, Faculty of Education, Ain Shams University, who supported me at the first step in this study through her suggestions for the research problems, valuable instructions, guidance and continuous follow up in this study. She offered me much of her precious time even after traveling. I had been learned from Dr. Mona several things not only on the scientific side but also in the international publishing experiences. Her continuous and continuous effort to obtain the best image of this thesis during the revision of this thesis is an invaluable.

Thanks also are due to **Prof. Ehab Fathy Mohamed**, Head of Mathematics Department, Faculty of Education, Ain Shams University, and all staff members for providing me with all facilities required to the success in this work.

I extend also my heartfelt thanks to scientific research fellows at the topological school headed by **Prof. Ali Kandil Saad**.

In particular my great thanks to **Dr. Mohamed Mostafa Yakout**, who helped me at the first blush in this department, for all his effort.

Finally, I am appreciative to my kind parents and my beloved family for their support, patience, sacrifice and continuous encouragement. I owe my mother **Soheir**, my father **Raafat**, my brothers **Mohamed** and **Mohab**, and my wife **Sahar** everything.

Mahmoud Raafat

Contents

$\mathbf{S}\iota$	ımm	ary	iii			
1	Pre	liminaries	1			
	1.1	Some basic concepts of topological structures	1			
	1.2	Some generalizations of rough sets	3			
		1.2.1 Pawlak's approximation space	3			
		1.2.2 Yao's approximation space	4			
		1.2.3 Allam et al.'s approximation space	4			
		1.2.4 Kozae et al.'s approximation space	5			
		1.2.5 Kandil et al.'s approximation space	5			
	1.3	Nano topological spaces	6			
	1.4	Basic concepts of multisets	8			
	1.5	Soft topological spaces	17			
	1.6	Soft multi topological spaces	20			
	1.7	Fuzzy set theory	24			
	1.8	Hesitant fuzzy sets and their properties	25			
2	Bi-i	Bi-ideal approximation spaces and their applications 2				
	2.1	Generalization of rough sets based on ideals	27			
	2.2	New types of generalized approximations based on ideals	34			
	2.3	Approximations of a set via ideals by using two approaches	41			
	2.4	An application in the chemistry field	46			
	2.5	A note on the manuscript "on generalizing covering approximation				
		space"	48			
	2.6	Conclusions	50			
3	On	generalization of rough multisets via multiset ideals	52			
	3.1	Generalized rough multisets via multiset ideals	53			

	3.2	New kinds of generalized multiset approximations via multiset ideals	58				
	3.3	An application in the medical field	65				
	3.4	A note on the manuscript "Rough multisets and information mul-					
		tisystems"	70				
	3.5	Conclusions	72				
4	Generalization of nano topological spaces induced by different						
	neig	shborhoods and ideals	75				
	4.1	I-nano topological spaces induced by different neighborhoods	76				
	4.2	Nano generalized closed sets via ideals	80				
	4.3	The relationships between the current approach and the previous one	83				
	4.4	An application from the real life problems	85				
	4.5	Conclusions	87				
5	Hesitant fuzzy soft multisets and hesitant fuzzy soft multi topo-						
	logi	cal spaces	89				
	5.1	Hesitant fuzzy soft multisets	89				
	5.2	Mappings between hesitant fuzzy soft multi-spaces	94				
	5.3	Hesitant fuzzy soft multi continuous mappings on hesitant fuzzy					
		soft multi spaces	107				
	5.4	Connectedness on hesitant fuzzy soft multi topological spaces	112				
	5.5	Conclusions	114				
6	Applications of hesitant fuzzy soft multisets in decision-making						
	pro	olems 1	116				
	6.1	Operations on hesitant fuzzy soft multisets	116				
	6.2	Hesitant fuzzy soft multisets in decision-making problems	120				
	6.3	An application in a decision-making problem	121				
	6.4	Conclusions	127				
$\mathbf{R}_{\mathbf{c}}$	efere	nces 1	L 2 9				

Chapter 1

Preliminaries

The purpose of this chapter is to present a short survey of some needed definitions and theories of the material used in this thesis.

1.1 Some basic concepts of topological structures

The aim of this section is to collect the relevant definitions and results from topology about interior, closure, boundary, separation axioms and mappings.

Definition 1.1.1 [35] Let X be a nonempty set. A class τ of subsets of X is called a topology on X if it satisfies the following axioms:

- 1. $X, \phi \in \tau$,
- 2. an arbitrary union of the members of τ is in τ ,
- 3. the intersection of any two sets in τ is in τ .

The members of τ are then called τ -open sets, or simply open sets. The pair (X, τ) is called a topological space. A subset A of a topological space (X, τ) is called a closed set if its complement A^c is an open set.

Definition 1.1.2 [82] Let (X, τ) be a topological space and $A \subseteq X$. Then,

- 1. $cl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is closed}\}\$ is called the τ -closure of A,
- 2. $int(A) = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \text{ is open} \}$ is called the τ -interior of A,

3. $b(A) = cl(A) \setminus int(A)$ is called the τ -boundary of A.

Definition 1.1.3 [82] Let (X, τ) be a topological space and $x \in X$ be an arbitrary point. A set $N \subseteq X$ is called a neighborhood of x if $x \in int(N)$, or equivalently, if there exists an open set U such that $x \in U \subseteq N$.

Definition 1.1.4 [37] Two subsets A and B of a topological space (X, τ) are said to be separated from each other in X if and only if $cl(A) \cap B = A \cap cl(B) = \phi$.

Definition 1.1.5 [70] A non-empty collection I of subsets of a set X is called an ideal on X, if it satisfies the following conditions:

- 1. if $A \in I$ and $B \in I$, then $A \cup B \in I$,
- 2. if $A \in I$ and $B \subseteq A$, then $B \in I$,

i.e. I is closed under finite unions and inclusions.

Definition 1.1.6 [72] Let (X, τ) be a topological space and $A \subseteq X$. Then, A is said to be a generalized closed (g-closed, for short) set if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is an open set.

Definition 1.1.7 [25] Let R be a binary relation on X. Then, R is called:

- 1. an identity relation $\Leftrightarrow R = \{(x, x) : x \in X\},\$
- 2. a reflexive relation $\Leftrightarrow (x, x) \in R, \forall x \in X$,
- 3. a symmetric relation $\Leftrightarrow (x,y) \in R$ implies $(y,x) \in R \ \forall x,y \in X$,
- 4. a transitive relation \Leftrightarrow $(x, y), (y, z) \in R$ implies $(x, z) \in R \ \forall x, y \in X$,
- 5. an equivalence relation $\Leftrightarrow R$ is reflexive, symmetric, and transitive relation,
- 6. a preorder relation $\Leftrightarrow R$ is reflexive and transitive relation,
- 7. an antisymmetric \Leftrightarrow $(x, y) \in R$ and $(y, x) \in R$ imply $x = y, \forall x, y \in X$,
- 8. a partial order relation if it is reflexive, antisymmetric and transitive.

Definition 1.1.8 [25] Let U be any set and R be any binary relation on U. The after set (respectively fore set) of the element $x \in U$ is the set $xR = \{y \in U : xRy\}$ (respectively $Rx = \{y \in U : yRx\}$).

Definition 1.1.9 [35] A function $f:(X,\tau)\to (Y,\theta)$ is called:

- 1. continuous if the inverse image of every open subset of Y is an open subset of X,
- 2. open (respectively closed) if the image of every open (respectively closed) subset of X is an open (respectively closed) subset of Y,
- 3. homeomorphism if f is one-to-one correspondence, continuous and open.

1.2 Some generalizations of rough sets

In the following subsections, we collect Pawlak's approximation spaces [86] and several generalizations of those spaces [6, 62, 68]. Therefore, the relationships among them were given by [6, 62, 68, 117].

1.2.1 Pawlak's approximation space

Definition 1.2.1 [86] Let R be an equivalence relation on a universe X, $[x]_R$ be the equivalence class containing x. For any subset A of X, the lower approximation R(A) and the upper approximation $\overline{R}(A)$ are defined by:

$$\underline{R}(A) = \{ x \in X : [x]_R \subseteq A \}, \tag{1.1}$$

$$\overline{R}(A) = \{ x \in X : [x]_R \cap A \neq \phi \}. \tag{1.2}$$

Theorem 1.2.1 [120] The upper approximation, defined by 1.2, has the following properties:

- 1. $\overline{R}(\phi) = \phi$,
- 2. $A \subseteq \overline{R}(A), \forall A \subseteq X$
- 3. $\overline{R}(A \cup B) = \overline{R}(A) \cup \overline{R}(B), \forall A, B \subseteq X$
- 4. $\overline{R}(\overline{R}(A)) = \overline{R}(A), \forall A \subseteq X,$
- 5. $\overline{R}(A) = (\underline{R}(A^c))^c, \forall A \subseteq X.$

Corollary 1.2.1 [62] Let R be an equivalence relation on X. Then, the operator \overline{R} on P(X) defined by 1.2 satisfied the Kuratowskis axioms and induced a topology on X denoted by τ_R and defined as

$$\tau_R = \{ A \subseteq X : \overline{R}(A^c) = A^c \}. \tag{1.3}$$

1.2.2 Yao's approximation space

Definition 1.2.2 [117] Let R be a binary relation on X and A be a subset of X. Then, the pair of lower and upper approximations, $\underline{R}(A)$ and $\overline{R}(A)$, are defined by:

$$\underline{R}(A) = \{ x \in X : xR \subseteq A \}, \tag{1.4}$$

$$\overline{R}(A) = \{ x \in X : xR \cap A \neq \phi \}. \tag{1.5}$$

Theorem 1.2.2 [8] If R is a preorder relation on X (i.e. R is a reflexive and a transitive relation on X), then the upper approximation, defined by 1.5, satisfies the properties in Theorem 1.2.1.

1.2.3 Allam et al.'s approximation space

Definition 1.2.3 [7] Let R be any binary relation on X, a set R is the intersection of all after sets containing p, i.e.,

$$R = \begin{cases} \bigcap_{p \in xR} xR, & \text{if } \exists \ x : p \in xR; \\ \phi, & \text{otherwise.} \end{cases}$$

Also, R is the intersection of all fore sets containing p, i.e.,

$$R = \begin{cases} \bigcap_{p \in Rx} Rx, & \text{if } \exists \ x : p \in Rx; \\ \phi, & \text{otherwise.} \end{cases}$$

Definition 1.2.4 [6] Let R be a binary relation on X. For any subset A of X, a pair of lower and upper approximations, R(A) and $\overline{R}(A)$, are defined by:

$$\underline{R}(A) = \{ x \in X : \langle x \rangle R \subseteq A \}, \tag{1.6}$$

$$\overline{R}(A) = \{ x \in X : \langle x \rangle R \cap A \neq \phi \}. \tag{1.7}$$

Lemma 1.2.1 [7] For any binary relation R on X if $y \in \langle x \rangle R$, then $\langle y \rangle R \subseteq \langle x \rangle R$.

Theorem 1.2.3 [6] Let R a reflexive relation on X. Then, the upper approximation, defined by 1.7, satisfies the properties in Theorem 1.2.1.