

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Influence of Different Surface Treatments of CAD/CAM Ceramic Materials on Micro Shear Bond Strength of Resin Cement to Two Hybrid Ceramic Materials

Thesis

Submitted for Partial Fulfillment of the Master Degree of Science Requirement in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Norhan Yehia Taher

Ain Shams University (2013) E-mail Address: norhanyehia91@gmail.com

Faculty of Dentistry - Ain Shams University
2019

Supervisors:

Dr. Tarek Salah Morsi

Professor of Fixed Prosthodontics Head of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Maged Mohamed Zohdy

Associate Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Tarek Salah Morsi**, Professor of Fixed Prosthodontics, Head of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Maged Mohamed**Zohdy, Associate Professor of Fixed Prosthodontics,

Faculty of Dentistry, Ain Shams University, for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Norhan Yehia Jaher

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	9
Introduction	1 -
Review of Literature	13
Statement of the Problem	33
Aim of the Study	34
Materials and Methods	35
Results	56
Discussion	67
Summary and Conclusion	75
Clinical Recommendations	79
References	80
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table 1:	List of materials used	35
Table 2:	Chemical composition of VITA enamic .	36
Table 3:	Physical and Mechanical Properties of enamic	
Table 4:	Chemical composition of CERASMART	37
Table 5:	Physical and Mechanical propert CERASMART	
Table 6:	Chemical composition of G-CEM	39
Table 7:	Levels of investigation.	41
Table 8:	Factorial Design.	41
Table 9:	Comparison between the three sur treatment regarding bond streng different type of material	th on
Table 10:	Comparison between cerasmart vitaenamic regarding bond streng different surface of treatment	gth on
Table 11:	Effect of type of surface treatment and material and the interaction between the bond strength	hem on
Table 12:	Percentage of different failure modes group	

List of Figures

Fig. No.	Title	Page No.
T' 1	TITOL I	
Figure 1:	VITA Enamic	
Figure 2:	CERASMART	
Figure 3:	G-CEM Dentobond (Etch and silane)	
Figure 4:	•	
Figure 5:	Thickness of the slice 2mm.	
Figure 6: Figure 7:	IsoMet 4000 Cutting slices using isoMet 4000 when	
rigure 7:	VITA enamic; B: CERASMART	•
Figure 8:	Steps of pouring acrylic resin in PVR to	
Figure 9:	Acrylic blocks with embedded CAD/	
rigure 3.	slices	
Figure 10.	Sandblasting of CERASMART	
_	Sandblasting of VITA –enamic	
_	Silane application.	
	Hydroflouric acid application	
_	Application of Silane	
•	ErCr:YSGG Laser unit	
•	ErCr:YSGG Laser Application. Where	
i igui e io.	VITA enamic; B: CERASMART	•
Figure 17:	Application of Silane	
•	Application of G-CEM Self-Adhesive	
_	Irises of polyethylene tube positioned	
	CAD/CAM slices	
Figure 20:	Testing machine.	
_	A loop wrapped around bonded r	
	cylinder	
Figure 22:	Digital Microscope	
•	Bar chart showing mean u-Shear	
O	Strength (MPa) values for different typ	
	surface treatments within each typ	
	material	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 24:	Bar chart showing mean µ-Shear Strength (MPa) values for different t materials within each type of treatment.	ypes of surface
Figure 25:	Stacked column chart showing percentage distribution of different modes in each group.	g the failure
Figure 26:	The mode of bond failure in VITA en	
	The mode of bond failure in CERASM	
•	Photographs showing different treatments of CERASMART scanned electron microscope at 6000x magnifi	surface l under
Figure 29:	Photographs showing different treatments of VITA enamic scanned electron microscope at 6000x magnifications.	surface under

Tist of Abbreviations

Abb.	Full term
Al ₂ O ₃	Aluminum oxide
C	CERASMART
CAD / CAM	Computer-aided design/computer aided- manufacturing
E	VITA enamic
$Er, Cr: YSGG\ laser$	Erbium, Chromium: Yttrium-Scandium- Gallium-Garnet laser
HF	Hydrofluoric acid
Nd:YAG laser	Neodymium-doped Yttrium Aluminum Garnet laser
PICN	Polymer infiltrated ceramic network

Introduction

omputer-aided design/computer-aided manufacturing (CAD/CAM) has widely been known and gained popularity in dental applications, especially over the last 10 years.

CAD/CAM systems providing high quality restorations have dramatically enhanced dentistry, as they have many advantages including standardized manufacturing processes of dental restorations, they also alternated the impression and casting procedure steps to provide faster and easier indirect restorations. [1] Regarding CAD/CAM restorative materials; many materials such as aluminum oxide, yttrium tetragonal zirconia polycrystals, feldspathic glass ceramics, leucite-reinforced glass ceramics, lithium disilicate glass ceramics, and composite blocks can be used. Generally, nonmetal CAD/CAM restoratives are currently divided into two main groups: ceramics and composites. [2]

Comparing composites to ceramics, composite indirect restorations are softer and less wear resistant but on the other hand have easy finishing and polishing properties, are less abrasive for opposing dentition, and are more accepting to the idea of add-on adjustments, although they experience high wear. [3] However, esthetic properties of ceramic restorations are outstanding to those of composite materials. [4] Plus, ceramics are more wear-resistant, more biocompatible, and more resistant to discoloration; however, they have their own drawbacks as they are more brittle, causing excessive wear to opposing natural dentition and are more liable to fracture due to the formation of flaws or cracks in the intaglio surfaces.

Combining both materials' advantages, which as a result enhance the properties and durability of indirect restorations, a new material named polymer-infiltrated-ceramic network material has been introduced. [3] This new material, also known as hybrid ceramic, composed mainly of a dominant ceramic network (86 wt.%) strengthened by an acrylate polymer network (14 wt.%). These two networks are mixed uniformly with each other. [5] The ceramic part of the currently available material (Vita Enamic; VITA Zahnfabrik, Bad Sackingen, Germany) has aluminum oxide enriched, fine-structure feldspar matrix infused by polymer including urethane dimethacrylate (UDMA) and others. [6] It has been reported that this new material is expected to have many advantages including less brittleness, hardness, and rigidity; more flexibility; and better machine handling and fracture toughness than ceramics.^[3] It creates a material with desired mechanical properties of ceramics and composites, which are considered to be the conventional restorative materials. ^[6]

The adhesion of indirect restorations to the tooth structure is a very critical step influencing the durability and success of treatment. Bonding between indirect restorations and tooth, fulfilling high retention, preventing micro leakage, and creating good marginal adaptation are challenging problems to the operator. [7] Also, providing strong, durable bond could increase the restored tooth's resistance to fracture as well as indirect restorations. [8]

Therefore, in order to have higher bond strength, easy, harmless, and applicable methods should be used, to increase surface properties of indirect restorations. [9] Many studies that used different methods like hydrofluoric acid (HF) etching, air-particle abrasion, and/or silanization

for surface treatment before cementation have enhanced certain indirect restorations' bond strengths. [8,10] On the other hand few studies have been conducted on the effect of surface treatments to increase the adhesion of the recently used CAD/CAM hybrid ceramics to resin cement. [5,11,12]

In recent studies, Er, Cr:YSGG (erbium, chromium: yttrium scandium gallium garnet) laser has been found to be effective in bond strength enhancement as a surface treatment method. [13,14] As for the surface treatment of new hybrid ceramics, no research has used an Er.Cr:YSGG laser.

There is deficiency in the research about the newly introduced CAD/CAM material mentioned above and their most ideal reparability techniques that can be applied clinically in the most simple and with the least cost.

This study aims to assess and compare the impact of 3 different surface treatments including hydroflouric acid etching, alumina particle sandblasting and Er, Cr: YSGG laser on the shear bond strengths of dualcure self-adhesive resin cement and novel CAD/CAM hybrid ceramic.