

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Assessment of the role of total antioxidant capacity and troponin I as possible predictors for phosphides -induced cardiotoxicity

(A prospective study in the poison control center of Ain Shams University Hospitals)

Thesis

Submitted for partial fulfillment of master degree in Clinical Toxicology

By

Marwa Mohamed Abdel Wahab

(M.B.B.Ch., Ain Shams University)
Demonstrator at Forensic Medicine and Clinical Toxicology Department

Under Supervision of

Prof. Dr/ Sawsan Abd El-Fattah Shalaby

Professor in Forensic Medicine and Clinical Toxicology department Faculty of Medicine-Ain Shams University

Prof. Dr/ Eglal Hassan El Awady

Professor in Forensic Medicine and Clinical Toxicology department Faculty of Medicine-Ain Shams University

Dr/ Rania Hussien Mohamed

Lecturer in Forensic Medicine and Clinical Toxicology department Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain-Shams University 2020

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of Allah generous help, throughout my life.

I would like to express my very great and deep appreciation to **Prof. Dr. Sawsan Abd El-Fattah Shalaby**, professor of forensic medicine and clinical toxicology, faculty of medicine, Ain Shams University for her precious instructions, expert supervision and valuable comments during the course of this work. I really had the honor to complete this work under her supervision.

I do feel extremely grateful to **Prof. Dr. Eglal Hassan El Awady**, professor in forensic medicine and clinical toxicology department, faculty of medicine, Ain Shams University for her active cooperation, continuous advice, great support as well as her expert touches. I was truly honored to work under her supervision.

I would like to offer my special thanks to **Dr. Rania Hussien Mohamed,** Lecturer in forensic medicine and clinical toxicology department, faculty of medicine, Ain Shams University for her patience, wise support, smooth learning without boredom and her respect to the candidate. I was truly honored to work under her supervision.

I would like to express sincere thanks to all staff members of forensic medicine and clinical toxicology department, as well as staff members of poison control center, Ain Shams University, for their great help and reinforcement.

Finally, I wish to thank my dear family, parents especially my beloved mother and friends for their help and continence support through the course of this work.

Marwa Mohamed Abdel Wahab

List of Contents

Title	Page No.
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction	1
Aim of the Work	4
Review of Literature	
Pesticides	5
Phosphides	9
Subjects and Methods	40
Results	63
Discussion	95
Summary	129
Conclusion	136
Recommendations	138
References	140
Arabic Summary	1-6

List of Abbreviations

Abb.	Full term
%	: Percentage
°C	: Celsius
8-OH-dGuo	: 8-hydroxydeoxyguanosine
A	: Airway
ABG	: Arterial blood gases
ABTS	: 2, 2'- azino-bis(3-ethylbenzothiazoline-6-sulphonic aci
ADP	: Adenosine diphosphate
AF	: Atrial fibrillation
AHA	: American Heart Association
ALP	: Aluminum phosphide
ALT	: Alanine transaminase
ARDS	: Adult respiratory distress syndrome
AST	: Aspartate transaminase
ATP	: Adenosine triphosphate
AUC	: Area under curve
В	: Breathing
BP	: Blood pressure
C	: Circulation
CAS	: Chemical Abstracts Service
CI	: Confidence interval
CL	: Chloride ion
CK-MB	: Creatine kinase myocardial band
Cm	: Centimetre
CO2	: Carbon dioxide
cTn I	: Cardiac Troponin I
CVP	: Central venous pressure
DNA	: Deoxyribonucleic acid
ECMO	: Extracorporeal membrane oxygenation
ECG	: Electrocardiogram
ER	: Emergency room
Etc	: et cetera
G6PD	: Glucose-6-phosphate dehydrogenase
GHS	: Globally Harmonized System of classification and
	Labeling of Chemicals
GIT	: Gastrointestinal tract

List of Abbreviations Cont...

Abb. Full term

gm : gram

gm/mol : gram-molecular weight

GSH : Glutathione H : Hydrogen ion

H2 receptor : Histamine receptor type II

 H_2O : Water

HCO3 : Bicarbonate

HCL : Hydrochloric acid
 H₃P : Hydrogen phosphide
 ICU : Intensive care unit

IGF-1 : Insulin like growth factor

IPCS : International Programme on Chemical Safety

IQR : Interquartile range

K : Potassium kg : kilogram

K-Test : Kruskal Wallis Test

L : Liter

 LD_{50} : The median lethal dose

mEq : Milliequivalent

mg/dl : *milligrams* per deciliter Mg3P2 : Magnesium phosphide

min : minute
Mm : Millimetre

mm Hg : millimeters of Mercury

μmol/L : Micromole /liter

Msec : Millisecond OH : Hydroxyl radical

N : one mole of silver nitrate

Na : Sodium

NAC : N-acetylcysteine

NADH : Nicotinamide Adenine Dinucleotide Hydrogen

NaHCO₃ : Sodium bicarbonate ng/ml : Nanograms Per Millilitre

 $\begin{array}{cccc} Nm & : & Nanometer \\ O_2 & : & Oxygen \end{array}$

List of Abbreviations Cont...

Abb.	Full term
OD	: Optical density
PaCO2	: Partial pressure of carbon dioxide
PaO2	: Partial pressure of oxygen
PCC-ASUH	: Poison Control Center of Ain Shams University Hospitals
PH_3	: Phosphine gas
$PH_4 +$: Phosphonium
Ppm	: Parts per million
PSS	: Poisoning Severity Score
PVC	: Premature ventricular contraction
RBBB	: Right bundle branch block
ROC	: Receiver Operating Characteristic
ROS	: Reactive Oxygen species
SD	: Standard deviation
So2	: Oxygen saturation
SOD	: Superoxide dismutase
TAC	: Total antioxidant capacity
TOS	: Total oxidative status
Tnt	: Troponin T
U test	: Mann Whitney Test
U/L	: Unit/liter
UK	: United Kingdom
UV	: Ultraviolet
V/v	: Volume/Volume
VE	: Vitamin E
VF	: Ventricular fibrillation
VT	: Ventricular tachycardia
WHO	: World Health Organization
Zn	: Zinc
ZnP	: Zinc phosphide
Zn_3P_2	: Zinc phosphide molecular formula
μg	: Microgram

List of Tables

Table No.	Title P	age No.
Table (1):	Classification of rodenticides active their LD50	-
Table (2):	WHO classifications of rodentici	des8
Table (3):	Reed's classification of the consciousness	
Table (4):	Vital data by age	43
Table (5):	QTc interval in adult male and f	female54
Table (6):	Grading of severity according to	PSS55
Table (7):	Frequency of sociodemographic the studied patients	
Table (8):	Frequency of intoxication da the studied patients	
Table (9):	Kruskal Wallis Test for constant between the studied groups as a delay time	regard the
Table (10):	Frequency of vital data ar studied patients	mong the
Table (11):	One way ANOVA test for construction between the studied groups regardized data	arding the
Table (12):	Frequency of clinical charamong the studied patients	
Table (13):	One way ANOVA test for construction between the studied groups a values of ABG	s regards
Table (14):	Comparison between the studie as regards random blood gluco sodium and serum potassium lev	se, serum
Table (15):	Kruskal Wallis test for constant between the studied groups a liver enzymes	s regards

List of Tables Cont...

Table No.	Title Page No.
Table (16):	Kruskal Wallis test for comparison between the studied groups as regards serum urea and creatinine
Table (17):	Kruskal Wallis test for comparison between the studied groups as regards TAC and troponin I
Table (18):	Frequency of ECG abnormalities among the studied patients81
Table (19):	One way ANOVA test for comparison between studied groups as regards ECG intervals83
Table (20):	Spearman correlation analysis between TAC and troponin I values in relation to the vital data of the studied patients88
Table (21):	Mann-Whitney test for relation of cardiovascular manifestations to values of TAC and troponin I89
Table (22):	Mann-Whitney test for relation of ECG abnormalities to values of TAC and troponin I in studied patients91
Table (23):	Kruskal Wallis Test for duration of hospitalization among the studied patients
Table (24):	Frequency of outcome of the studied patients92
Table (25):	The best cut off value, sensitivity and specificity of serum TAC level for prediction of mortality in patients with acute phosphides poisoning93
Table (26):	The best cut off value, sensitivity and specificity of serum troponin I for prediction of mortality in patients with acute phosphides poisoning

List of Figures

Fig. No.	Title Page No.	
Figure (1):	Structural formula of zinc phosphid	12
Figure (2):	Structural formula of ALP	
Figure (3):	Interaction of phosphide with water and acid	
Figure (4):	Structural formula of phosphine	
Figure (5):	Zinc phosphide black powder	
Figure (6):	Zinc phosphide dark grey powder	
Figure (7):	Aluminum phosphide pellets	
Figure (8):	ALP granules	
Figure (9):	ALP powder	
Figure (10):	ALP tablet	
Figure (11):	Oxidative stress produced after metal phosphides	
	exposure	23
Figure (12):	A schematic representation of the mitochondrial	
	respiratory chain, ROS formation, and phosphine	
	toxicity	
Figure (13):	Total antioxidant standard curve	
Figure (14):	Troponin I standard curve	52
Figure (15):	Pie chart showing frequency of gender for the	
	studied patients	64
Figure (16):	Pie chart showing frequency of residence of the	_ ~
T: (18)	studied patients	65
Figure (17):	Pie chart showing type of phosphide among the	67
Figure (19).	studied patients	07
Figure (18):	Pie chart showing mode of exposure to phosphides among the studied patients	67
Figure (19):	Histogram showing comparison between the	07
rigure (17).	studied groups as regards the delay time	68
Figure (20):	Histogram showing Frequency of clinical	00
-19410 (=0)1	manifestations in the studied patients	73
Figure (21):		
	studied groups as regards ABG values	75

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (22):	Histogram showing comparison studied groups as regards TAC	
Figure (23):	Histogram showing comparison studied groups as regards troponin I	
Figure (24):		ities in studied
Figure (25):	Histogram showing comparison studied groups as regards ECG inter	
Figure (26):	Lead V5 shows sinus tachycardia i 20 years old of group II with acute Z	
Figure (27):	Lead II showing sinus bradycardia, interval (red line) and prolonged Qline) in male patient 28 years old of acute ALP poisoning	Γ interval (blue group III with
Figure (28):	Lead II showing prolonged QT inte in female patient 19 years old of acute ALP poisoning	rval (blue line) group III with
Figure (29):	LeadsV2 and V3 showing elevated inverted Twave and pathological leadV2 in female patient 16 years of	d ST segment, al Q wave in
Figure (30):	with acute a ALP poisoning	ST segment, nplex in male with acute ALP
Figure (31):	Lead III showing depressed ST seg patient 17 years old of group III w poisoning	gment in femal vith acute ALP
Figure (32):	Lead II showing hyperacute T patient 38 years old of group II v poisoning	wave in male vith acute ZnP

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (33):	Lead IIshowing nodal rhythm a female patient 24 years old of gr	oup II with acute
	ZnP poisoning	87
Figure (34):	Lead II showing multible PVCs	in female patient
	46 years old of group II with acut	e ZnP poisoning 87
Figure (35):	ROC curve of serum TAC mortality in patients with a	level to predict cute phosphides
	poisoning	93
Figure (36):	ROC curve of serum troponin mortality in patients with a poisoning	cute phosphides

Introduction

Rodenticides toxicity has been a public health problem worldwide, as about 250,000 to 370,000 individuals die each year due to exposure. They are the second common cause of suicidal attempts worldwide after organophosphates responsible for about one-third of these attempts (*Hashemi-Domeneh et al.*, 2016; *Manouchehri et al.*, 2019).

Metal phosphides are type of rodenticide that are extremely lethal with low safety and high mortality rates as high as 70–100% (*Mehrpour et al.*, 2012; Etemadi-Aleagha et al., 2015). They are also used as a common powerful suicidal tool in Egypt and developing countries due to its low price and easy availability (Sagah et al., 2015; Badawi et al., 2018).

According to reports from the Poison Control Center of Ain Shams University Hospitals (PCC-ASUH), it was reported that 568 (13% of admissions) and 386 (10.2% of admissions) cases of acute metal phosphides poisoning were admitted during years of 2016 and 2017 respectively (*Records from PCC-ASUH*).

The exact mechanism of acute phosphides toxicity has not been well defined despite the high mortality rates that are reported following significant exposures to aluminium or zinc phosphides and the treatment is still supportive including rapid decontamination and institution of resuscitative measures (*Goharbari et al.*, 2018).

Evidence of reactive oxygen species-induced toxicity owing to metal phosphides has been observed in insects