SYNTHESIS AND CHARACTERIZATION OF NANO COMPOSITE ACTIVATED BENTONITE FOR DECONTAMINATING HEAVY METAL FORM WASTE WATER

Submitted By Ramy Saleh Mostafa Elnagar

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2020

APPROVAL SHEET

SYNTHESIS AND CHARACTERIZATION OF NANO COMPOSITE ACTIVATED BENTONITE FOR DECONTAMINATING HEAVY METAL

FORM WASTE WATER

Submitted By Ramy Saleh Mostafa Elnagar

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 2003
A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee

Signature

1-Prof. Dr. Mohamed Salah El-Din Mostafa

Prof. of Public Health Faculty of Postgraduate of Childhood Studies Ain Shams University

2- Prof. Dr. Farida Mohamed Saad El-Din El Ders

Prof. of Inorganic Chemistry Faculty of Science Helwan University

3- Dr. Engineering/Sherif Farag Mohamed

Manager of Analytical Chemistry Laboratory Main Laboratories, Ministry of Defense

4-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

2020

SYNTHESIS AND CHARACTERIZATION OF NANO COMPOSITE ACTIVATED BENTONITE FOR DECONTAMINATING HEAVY METAL FORM WASTE WATER

Submitted By

Ramy Saleh Mostafa Elnagar

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

2-Dr. Engineering/Sherif Farag Mohamed

Manager of Analytical Chemistry Laboratory Main Laboratories, Ministry of Defense

2020

ACKNOWLEDGEMENT

First and forever, thanks are due to Allah, the beneficent and merciful for giving me the capability and helping me to complete and finish this thesis and showing me the right path.

I am most indebted to my principal supervisor, Prof. Dr. / Mahmoud Ahmed Hewehy. I am grateful to him for his timely academic guidance and positive criticism which helped me improve my analytical, research, scientific-writing and presentation skills. I am also thankful to him for his painstaking effort in reviewing my thesis. The compilation of this thesis would have not been possible without his valuable suggestions and comments. I would like to thank you for your encouragement and inspiration throughout this project that helped me finish my study without any hurdles.

I owe a debt of gratitude to my supervisor Dr. / Sherif Faraj Mohamed, who always stood by when I needed him and for providing access to the laboratory for the use of instruments and devices.

My eternal gratitude goes to all my colleagues of Main Chemical Warfare Laboratories with whom I worked during my research study for their advice, moral support.

Finally, I would like to thank my wife, for her love, patience and understanding. Without whose support I would have struggled to find the inspiration and motivation needed to complete my research. I am also thankful to my mother, my sons, my brothers and all other family members for serving as a strong pillar of encouragement and support that they provided during my study.

ABSTRACT

Bentonite, extremely plentiful normal clay, has been considered as a potential absorbent for expelling contaminations from water and wastewater. Disregarding that, the viable use of bentonite for water treatment is restricted because of small surface area. Thus, the focus of this study was coordinated to the change of some physical and chemical properties of bentonite to increase its adsorption capacity.

The modification of raw bentonite was carried out by three chemical methods converted calcium bentonite to sodium bentonite then acid activation (AA) by sulfuric acid (3M) and finally combined activated bentonite to Fe₃O₄ nano composite was prepared by chemical co-precipitation method to increase surface area. The characterization of the modified bentonite clay was carried out by Braunneur – Emmet – Teller (BET) method for surface area, scanning electron microscopy (SEM) for morphological analysis of modified bentonite and Fourier transformation infrared (FTIR) spectroscopy for the determination of the effect of acid attack. The increase in surface area of the modified bentonite was 25.259 m²/g, 31.86 m²/g, 62.194 m²/g and 107.998 m²/g by Ca-bentonite, Na-bentonite, AA and nano composite bentonite, respectively. The microscopic images obtained through SEM showed that the structure of the modified clay has become more porous, offering additional adsorption sites enhancing the surface properties of bentonite.

The modified bentonite by sodium bentonite, AA and bentonite nano composite were examined for their performance as adsorbents for the heavy metals removal. The effect of key operational parameters, such as pH, contact time, the heavy metals concentration and adsorbent dosage was experimentally studied. The pH changes appeared to have significant impact. The best pH for adsorption arsenic, melobednium, selenium, chromium, antimony and barium were at

pH=6.

The heavy metals adsorption increased with an increase in modified bentonite dose, but optimum dose was at 0.5 g.

The heavy metals adsorption increased with an increase in contact time, but optimum time was at 15 min. The adsorption capability of bentonite increased with an increase in heavy metals concentration and decrease in removal efficiency.

The maximum removal of heavy metals was obtained by bentonite nano composite (98.4 %) for Cr, (98.8 %) for As , (91.3 %) for Se, (90.8 %) for Mo, (79.1 %) for Sb, (75.3 %) for Ba.

The results from this study suggest that a combination of acid activation and nano composite was an effective method to improve adsorption capacity of the bentonite. The bentonite modified by acid activation and nano composite provided the maximum surface area and adsorption capacity and was successfully employed for the removal of heavy metals from wastewater.

TABLE OF CONTENTS

Chapter 1 : Introduction	1
1.1 Background	2
1.2 Aim and objectives	7
CHAPTER 2: Literature Review	9
2.1 Introduction	10
2.2 Sources water Pollution	11
2.2.1 Point sources of pollution	11
2.2.2 Non-point source of pollution	11
2.3 The causes of water pollution divided into two	12
groups	
2.3.1 Anthropogenic sources	12
2.3.2 Natural sources	12
2.4 Major Water Contaminants	12
2.4.1 Organic water pollutants	12
2.4.2 Inorganic pollutants	13
2.5 Types of Water Pollution	13
2.5.1 Toxic Substance	13
2.5.2 Organic Substance	13
2.5.3 Thermal Pollution	14
2.5.4 Ecological Pollution	14

2.6 Heavy metals and health effects	14
2.6.1 Arsenic	15
2.6.1.1 Effect of arsenic	15
2.6.2 Lead	16
2.6.2.1 Effect of lead	16
2.6.3 Mercury	17
2.6.3.1 Effect of Mercury	17
2.6.4 Cadmium	18
2.6.4.1 Effect of Cadmium	18
2.6.5 Chromium	19
2.6.5.1 Effect of Chromium	20
2.6.6 Selenium	20
2.6.6.1 Effect of Selenium	21
2.6.7 Antimony	21
2.6.7.1 Effect of Antimony	22
2.6.8 Barium	22
2.6.8.1 Effect of Barium	23
2.6.9 Molybdenum	23
2.6.9.1 Effect of Molybdenum	23
2.7 Egyptian environmental law No. 4 / 1994 and its amendments	24
2.8 Conventional methods for removal of heavy	24

metal

	2.8.1 Chemical precipitation	25
	2.8.2 Chemical Oxidation	25
	2.8.3 Chemical Coagulation/ flocculation	25
	2.8.4 Ion Exchange	26
	2.8.5 Electro dialysis	27
	2.8.6 Ultrafiltration	27
	2.8.7 Reverse osmosis	27
	2.8.8 Adsorption	28
	2.8.8.1 Advantages of adsorption	28
2.9	Types of adsorbents	30
	2.9.1 Activated Carbon	30
	2.9.2 Bio sorbents	31
	2.9.3 Natural Clays	33
	2.9.3.1 Kaolin	33
	2.9.3.2 Zeolite	33
	2.9.3.3 Bentonite	34
2.1	0 Modification of Clays	38
2.1	1Methods of Modification of Clay Minerals	38
	2.11.1 Pillared Clays	38
	2.11.2 Polymer Modified Clay	39

2.11.3 Organoclays	39
2.11.4 Thermal Activation	40
2.11.5 Acid Activation	41
2.11.5.1 Mechanism of Acid Activation	41
2.12 Nanotechnology in water research	42
2.12.1 Nano adsorbents	42
2.12.2 Classification of nano-adsorbents	43
2.12.2.1Oxide based nano-particles	43
2.12.2.2 Iron based nano-particles	44
2.12.2.3 Manganese oxides nano-particles	44
2.12.2.4 Zinc oxide nano-particles	44
2.12.2.5 Magnesium based nano-particles	44
2.12.2.6 Carbon nanotubes (CNTs)	45
2.12.2.7 Graphene based nano-adsorbents	45
2.12.3 Factors affecting adsorption process for nano-adsorbents	45
2.12.4 Bentonite and its composites materials for removing metals	46
CHAPTER3: MATERIALS AND METHODS	50
3.1 Materials	51
3.1.1 Bentonite	51
3.1.2 Heavy Metals	51

3.1.3 Standard stock solution	53
3.1.4 Reagents	54
3.2 Bentonite modification	54
3.2.1 Convert calcium bentonite to sodium bentonite	54
3.2.2 Acid Activation	56
3.2.3 Preparation of Acid Activated bentonite nano composite	58
3.3 Characterization of modified benonite	59
3.3.1 Surface area	59
3.3.2 Fourier transform infra red spectroscopy	60
3.3.3 X-ray diffraction analysis of the prepared samples	61
3.3.4 Scanning electron microscope (SEM)	62
3.3.5 High resolution transmission electron microscope (TEM)	63
3.4 Experimental Set up	64
3.4.1 Effect of the pH	66
3.4.2 Effect of the adsorbent dosage	66
3.4.3 Effect of contact time	66
3.4.4 Effect of the initial metals concentration	66
3.5 Analysis Procedure	67

3.5.1 Sampling Procedure	67
3.5.2 Capacity of modified bentonite	67
CHAPTER 4: RESULTS AND DISCUSSION	69
4.1 Introduction	70
4.2 Characterization of Surface morphology by using scanning electron microscopy (SEM) - (TEM).	70
4.2.1 The Surface morphology of Ca- Bentonite	70
4.2.2 (EDX) of Ca-bentonite	71
4.2.3 The surface morphology of Na- bentonite	72
4.2.4 (EDX) of Na-bentonite	73
4.2.5 The surface morphology of acid activated bentonite	74
4.2.6 (EDX) of acid activated bentonite	74
4.2.7 The surface morphology of bentonite nano composite	75
4.2.8 (EDX) of bentonite nano composite	76
4.2.9 TEM micrograph of Fe ₃ O ₄ / bentonite nano composite	77
4.3 crystalline mineral phases of modified bentonite	78
4.4 .1 X-ray Diffraction (XRD) of Na- Bentonite	78
4.4.2 X-ray Diffraction (XRD) of acid activated Bentonite	81

4.4.3 X-ray Diffraction (XRD) of Bentonite nano	83
composite	
4.4 Characterization of surface area	84
4.2.1 Surface area of Na- bentonite	84
4.2.2 Surface area of acid activated- bentonite	86
4.2.3 Surface area of bentonite nano composite	87
4.5 FTIR analysis	88
4.5.1 FTIR of Na- Bentonite	88
4.5.2 FTIR of acid activated Bentonite	90
4.5.3 FTIR of Bentonite nano composite	91
4.6 Optimization studies and application	93
4.6.1 Effect of optimum pH	93
4.6.2 Effect of optimum dose	95
4.6.3 Effect of optimum Contact time	97
4.6.4 Effect of optimum initial concentration	99
4.6.5 Application of optimized factors on heavy	106
metals from waste water	
4.6.5.1 Waste water from the general petroleum	106
Company	
4.6.5.2 Waste water from Egyptian company	108
for pre-stressed concrete	
4.6.5.3 Waste water from Suez oil processing	110

company

4.6.5.4 Waste water from Egyptian company for	112
metals	
CHAPTER 5 : CONCLUSIONS	115
Recommendation	118
Summary	121
References	125

LIST OF FIGURES

2.1	Types of adsorbents	30
2.2	Structure of bentonite	35
3.1	Wisestir magnetic stirrer used for converting	
bent	conite	55
3.2	Hettic rotofix 32 A centrifuge	55
3.3	Calcium bentonite and sodium bentonite.	56
3.4	Bentonite in a round bottomed flask with a reflux	
cond	denser	57
3.5	Bentonite modified by sulfuric acid	57
3.6	Activated bentonite nano composite	58
3.7	Types of modification bentonite composite	59
3.8	Quanta chrome nova win -data acquisition 3000e	60
3.9	Jasco FTIR 6200 spectrophotometer	61
3.10	X-ray diffraction analysis device	62
3.11	FEI Czech scanning electron microscope (SEM)	63
3.12	JOEL 2100 transmission electron microscope	
(TE	M)	64
3.13	Incubator shaker (THZ-100)	65
3.14	Agilent 7700 ICP-MS and ASX500 auto sampler	65
4.1	SEM of Ca- bentonite	71
4.2	EDX of Ca- bentonite	71