

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Science Department of Mathematics

On RDF of Semantic Web

A Thesis Submitted to Department of Mathematics –
Faculty of Science – Ain Shams University in Partial
Fulfillment of the Requirements of the Award of the Ph.D.
Degree in Computer Science

By

Mona Abbass Hamed Ahmed

Mathematics and statistics specialist — Climate Change information Center & renewable Energy & Expert System — Agricultural Research Center

Supervised by

Prof. Dr. Fayed F. M. Ghaleb

Professor Emeritus of Computer Science Faculty of Science – Ain Shams University

Dr. Azza A. Taha

Lecturer of Computer Science
Faculty of Science – Ain Shams University

Prof. Dr. Mahmoud Abd ElLatif

Professor of Information System

Faculty of Computers and Artificial Intelligence – Helwan University

Assoc. Prof. Dr. Maryam Hazman

Senior Researcher at Climate Change information Center & renewable Energy & Expert System –Agricultural Research Center

List of Abbreviations

RDF Resource Description Framework

RDB Relational Databases

BF-hypergraph Backward and Forward hypergraph

WWW World Wide Web

Ajax Asynchronous JavaScript

HTML Hyper Text Markup Language

XML Extensible Markup Language

URI Uniform Resource Identifier

Self- Desc. Doc. . . Self- Description Document

RDFS RDF Schema

OWL..... Web Ontology Language

LDM-3N.... Labelled Directed Multigraph with Triple Nodes

1NF First normal form

2NF Second normal form

3NF Third normal form

DBMS Database management system

SQL Structure Query Language

RDB2RDF..... Relational Database to Resource Description Framework

SKOS Simple Knowledge Organization System

RCAHMS Royal Commission on the Ancient and Historical Monuments

of Scotland

List of Figures

1.1	A layered approach of the semantic web	4
1.2	Graphic representation of an RDF triple	5
1.3	RDF and RDFS layers	6
2.1	Simple graph	12
2.2	Subgraph	12
2.3	Bipartite graph	13
2.4	Regular bipartite graph	13
2.5	MultiGraph	13
2.6	Directed graph	13
2.7	Labeled directed graph	14
2.8	A hypergraph with four edges.	15
2.9	A subhypergraph of the hypergraph in Figure 2.8	17
2.10	The induced hypergraph of the hypergraph of Figure 2.8 by the set $M = \{B, C, D, E\}$	18
2.11	A BF-hypergraph <i>H</i> with 7 nodes and 4 hyperedges	20
3.1	A cyclic SUPPLIER-PART database schema	27
3.2	The hypergraph corresponding to the cyclic database schema of Figure 2.12	27
3.3(a)	FD hypergraph for SUPPLIER relation	29

3.3(b)	FD hypergraph for PART relation	29
3.3(c)	FD B- hypergraph for SHIPMENT relation	
3.4	EMP_PROJ relation	
3.5	Normalizing EMP_PROJ into 2NF relations	31
3.6	EMP_DEPT relation	31
3.7	Normalizing EMP_DEPT into 3NF relations	
3.8	The graph representation of an RDF statement	
3.9	An RDF_ graph database	
3.10	A graph pattern Q matched against an edge-labeled graph	
4.1	An α-acyclic hypergraph	38
4.2	An α -cyclic hypergraph	
4.3	The directed labeled multigraph for the RDF T_1 of Table 4.1	
4.4	An RDF graph extending the notion of edge	45
4.5	Undirected hypergraph for an RDF triples (s, p, o)	46
4.6	Undirected hypergraph for the first three statements of RDF T_1 of Table 4.1	46
4.7	Bipartite graph for an RDF triple (s, p, o)	47

4.8	The Bipartite graph for the first three statements of the RDF T_1 of Table 4.1	48
4.9	The directed hypergraph for the RDF graph T_1 of Table 4.1	49
4.10	The directed hypergraph for the RDF_graph T_2 of Table 4.1	50
4.11	The directed hypergraph for the RDF_graph T_2 of Table 4.1	51
4.12	Translation of a first tuple in SITE relation to RDF directed graph	54
4.13	The blank node of the relation SITE of Figure 4.10 has been replaced by a URI	55
4.14	A many-to-many join in a relational database	56
4.15	Many-to-many RDB join translated to RDF_graph	56
4.16	Eliminating redundant RDF nodes at many-to- many RDB joins	57
5.1	A connected hypergraph	63
5.2	A connected hypergraph of Figure 5.1 after removing nodes n_3 , n_5 , n_8 , n_{11} , n_{14} , n_{17} , and n_{18}	64
5.3	A connected hypergraph of Figure 5.2 after removing edges e_6 and e_7	64
5.4	The connected hypergraph of Figure 5.3 after removing nodes n_{12} , n_{13} , n_{15} , and n_{16}	65

5.5	The connected hypergraph of Figure 5.4 after removing edges e_4 and e_5	65
5.6	A connected hypergraph $H' = \{e'_1, e'_2, e'_3\}$ after removing nodes n_7, n_9 , and n_{10}	66
6.1	The four steps of the proposed model	72
6.2	A cyclic database schema	74
6.3	The hypergraph corresponding to the cyclic database schema of Figure 6.2	74
6.4	An acyclic database schema	75
6.5	The hypergraph corresponding to the acyclic database schema of Figure 6.4	75
6.6	The resulted acyclic database schema of the database schema of Figure 3.1	80
6.7	The acyclic hypergraph corresponding to the acyclic database schema of Figure 6.6	80
6.8	The RDF-BF-Hypergraph representation corresponding to the acyclic database schema of Figure 6.6	81
6.9	An instance of the acyclic database of Figure 6.6	82
6.10	The RDF-BF-hypergraph instance of the RDF-BF-hypergraph representation of Figure 6.8	
6.11	An instance of acyclic database	83

6.12	The RDF-BF-hypergraph corresponding to the acyclic dat Figure 6.11	•	84
6.13	The RDF-BF-hypergraph instance hypergraph representation of Figure		84
6.14	An instance of the cyclic database	of Figure 3.1	85
6.15	The RDF-BF-hypergraph instance of the cyclic database of Figure 6.		85

List of Tables

3.1	The result of evaluating the graph pattern Q against the graph G	35
4.1	The RDF T_1 and T_2	43
4.2	The different representations of RDF as graph models	52

Contents

Acknowledgements		i
List of published papers		ii
Table of C	Table of Contents	
List of Fig	gures	vi
List of Tal	oles	xi
List of Ab	breviations	xii
Abstract		xiii
Chapter 1	Introduction: Basic Concepts of WWW	1
1.1	Stages of the World Wide Web Evolution	1
1 .1.1 Web 1.0		2
1 .1.2 Web 2.0		2
1 .1.	3 Web 3.0 or Semantic Web	3
	1 .1.3.1 The Development of the Semantic Web	4
1 .2	Problem Statement	8
1 .3	Thesis Objectives	8
1 .4	Thesis Contributions	9
1 .5	Thesis Outline	10

Chapter 2	Graphs and Hypergraphs: Basic Definitions	11
2.1	Graphs	11
2.2	Hypergraphs	15
Chapter 3	Graph Treatments of Relational Database	23
	Model and RDF	
3.1	Relational Database Model	23
3.2	The Structure of RDF	32
Chapter 4	Related Work	37
4 .1	Hypergraph Acyclicity	37
4 .1	.1 α -acyclicity	37
4.1	.2 The Graham (or GYO) Algorithm	40
4 .2	Graph Representation of RDF	43
4.1	.2 The Directed Labeled Multigraph Model	44
4 .2	.2 The Undirected Hypergraph Model	46
4 .2	.3 The Bipartite Graph Model	47
4.2	.4 The Directed Hypergraph Model	48
4 .2	.5 The Labelled Directed Multigraph with Triple Nodes (LDM-3N)	50
4 .3	RDF Graph Representations for the Relational Database	53

Chapter 5	A New Type of Cyclicity in Hypergraphs	61
5 .1	A new Formalization of GYO Algorithm	61
5 .2	A Quasi α -cycle in Hypergraphs	67
Chapter 6	The Proposed Model	71
6.1	Representing the Relational Database Schema R as Hypergraph	73
6.2	Checking for α -cycles	73
6.3	Treatment of α -cycle(s)	76
6 .4	Generating the RDF-BF-Hypergraph Representation that Corresponds to RDB Schema	78
6 .5	Results and Discussion	79
Chapter 7 Conclusion and Future Work		87
7 .1	Conclusion	87
7 .2	Future Work	89
Bibliography		91

Acknowledgements

First, I thank Allah the Almighty for giving me the strength and the ability to complete this thesis. Many thanks to my family who patiently encouraged and supported me to finish this work.

Prof. Dr. Fayed Ghaleb and Dr. Azza Taha, for their constructive guidance throughout the development of the work. The opportunity I had to share in their boundless vision, enthusiasm and advice is something for which I shall always be profoundly grateful, Assoc. Prof. Dr. Maryam Hazman, for giving me feedback and for her support as research on this thesis; and Prof. Dr. Mahmoud Abd ElLatif, for his support and patience. Without their guidance and advice this thesis would not exist. It is pleasure to express my great thanks to Mathematics department, Faculty of Science, Ain Shams University for giving me this opportunity.