

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Relation of FDG uptake of breast cancer and the histologic and the biologic characteristics of the tumor

Thesis
Submitted for Partial Fulfillment of Master Degree of Radiology

By Mirette Rafik Helmy Thabet (M.B.B.CH.)

Under supervision of **Prof. Dr. Faten Mohammed Mahmoud Kamel**

Professor of Radiology Faculty of Medicine Ain Shams University

Dr. Wafaa Raafat Ali Lecturer of Radiology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2020

ACKNOWLEDGMENT

First, I thank **God** for blessing me more than I deserve and for this uncountable gifts which are exceeding abundantly above all what we ask or think.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Faten Mohammed Mahmoud Kamel** for her sincere encouragement, constant advice and gentle dealing with me, it is a real honor for me to work under her supervision.

I owe special thanks, gratitude and appreciation to Lecturer Dr. Wafaa Raafat Ali for her close supervision, continuous advice and support which gave me the best guidance during different stages of this work.

Finally, I would like to thank my family, my friends, and my colleagues, for their support and moral encouragement.

INDEX

List of figures	II
List of tables	V
List of abbreviations	VII
Introduction	1
Aim of work	4
Breast anatomy	5
Pathology of breast cancer	11
Role of radiological imaging in breast	23
cancer	
Positron emission Tomography (PET)	28
Role of PET/CT in breast cancer	39
Relation of FDG uptake of breast cancer	46
and the histologic and the biologic	
characteristics of the tumor	
Patients and Methods	49
Results	54
Illustrative cases	80
Discussion	91
Conclusion	97
Recommendation	98
References	99
Arabic summary	112

LIST OF FIGURES

Figure 1	Longitudinal cut sections of breast layers	5
Figure 2	Sagittal section of the normal female breast	6
Figure 3	Quadrants of right female breast	7
Figure 4	Diagram of the breast duct system and terminal duct	7
	lobular unit definition	
Figure 5	Lymphatic drainage of the breast	9
Figure 6	Clinical quadrants of the breast with percentage of	14
	breast cancer occurrence in each quadrant	
Figure 7	ACR classification of breast composition	24
Figure 8	Image of PET/CT device	29
Figure 9	Annihilation process	29
Figure 10	Scintillation detectors and photoamplification	30
Figure 11	FDG uptake in a cancer cell	31
Figure 12	PET/CT Fusion process	32
Figure 13	Normal distribution of 18F-FDG	33
Figure 14	Images demonstrating CT artifacts	37
Figure 15	Image of PEM system	340
Figure 16	Metabolic response in metastatic breast cancer	43
Figure 17	Pie chart age distribution of the patients group.	54
Figure 18	Bar chart site of breast lesion distribution of the study	56
	group	
Figure 19	Pie chart lymph node distribution of the study group	56
Figure 20	Bar chart site of lesion by lymph node distribution of	57
	the study group.	
Figure 21	Pie chart metastasis distribution of the study group.	58
Figure 22	Bar chart site of metastasis distribution of the study	58
	group	
Figure 23	Pie chart type of carcinoma distribution of the patients	59
	group.	
Figure 24	Pie chart grade distribution of the patients group	60
Figure 25	Bar chart distribution of breast cancer of cases	61
	according to their ER & PR and Her2/Neu.	
Figure 26	Bar chart Ki67% distribution of the patients group	62
J		

Figure 27	Histogram liver activity distribution of the study group.	63
Figure 28	Pie chart size of breast lesion distribution of the study group	64
Figure 29	Histogram SUVmax of breast lesion distribution of the study group	65
Figure 30	Pie chart size of lesion by lymph node distribution of the study group.	66
Figure 31	Histogram SUVmax of lymph node distribution of the study group.	66
Figure 32	Histogram SUVmax of metastasis distribution of the study group.	67
Figure 33	Bar chart relation between all parameters and SUVmax of breast lesion in the study group	69
Figure 34	Bar chart relation between all parameters and SUVmax of lymph node in the study group	70
Figure 35	Bar chart relation between all parameters and SUVmax of metastasis in the study group	71
Figure 36	Scatter plot between SUVmax of breast lesion with age	72
Figure 37	Scatter plot between SUVmax of breast lesion with Ki67%.	73
Figure 38	Scatter plot between SUVmax of breast lesion with size of breast lesion.	73
Figure 39	Scatter plot between SUVmax of lymphnode with Ki67%.	74
Figure 40	Scatter plot between SUVmax of lymphnode with size (cm).	75
Figure 41	Scatter plot between SUVmax of metastasis with age.	76
Figure 42	Scatter plot between SUVmax of metastasis with Ki67%.	77
Figure 43	Diagnostic Performance of SUVmax of breast lesion in Discrimination of ER&PR (positive and negative).	78
Figure 44	ROC curve for diagnostic Performance of SUVmax of breast lesion in Discrimination of Her2/neu (positive and negative).	79

Figure 45	Illustrative case 1	80
Figure 46	Illustrative case 2	81
Figure 47	Illustrative case 3	82
Figure 48	Illustrative case 4	82
Figure 49	Illustrative case 5	83
Figure 50	Illustrative case 6	84
Figure 51	Illustrative case 7	86
Figure 52	Illustrative case 8	87
Figure 53	Illustrative case 9	88
Figure 54	Illustrative case 10	89

LIST OF TABLES

Table 1	Incidence of breast cancer in different	13
	quadrants	
Table 2	TNM classification for breast cancer	19
Table 3	Anatomic stage/prognostic groups	21
Table 4	BI-RADS report final assessment categories	25
Table 5	Factors affecting 18F-FDG uptake	31
Table 6	Methods of reporting SUV	34
Table 7	Technical errors affecting SUV measurement	35
Table 8	Physics related errors affecting SUV	35
	measurement	
Table 9	Physiologic, biologic and physical errors	35
	affecting SUV measurement	
Table 10	Distribution of breast cancer of cases according	54
	to their demographic data regarding age	
Table 11	Descriptive clinical data, site of tumor, lymph	55
	nodes and metastasis of the patients	
Table 12	Distribution of breast cancer of cases according	59
	to their type of carcinoma and grade	
Table 13	Distribution of breast cancer of cases according	61
	to their ER & PR and Her2/Neu	
Table 14	Distribution of breast cancer of cases according	62
	to their Ki67	
Table 15	Distribution of breast cancer of cases according	63
	to their liver activity	
Table 16	Distribution of breast cancer of cases according	64
	to their breast lesion regarding, size and	
	SUVmax	
Table 17	Distribution of breast cancer of cases according	65
	to their lymph node regarding size and	
	SUVmax	
Table 18	Distribution of breast cancer of cases according	67
	to their metastasis regarding SUVmax	
Table 19	Relation between age and SUVmax of breast	68
	lesion in the study group.	
Table 20	Relation between all parameters and SUVmax	69
	of lymph node in the study group.	
Table 21	Relation between all parameters and SUVmax	70
	of metastasis in the study group.	

Table 22	Correlation between SUVmax of breast lesion	72
	with age, Ki67%, liver activity and size of	
	breast lesion	
Table 23	Correlation between SUVmax of lymphonde	74
	with age, Ki67%, liver activity and size (cm).	
Table 24	Correlation between SUVmax of metastasis	76
	with age, Ki67% and liver activity.	
Table 24	ROC curve for diagnostic Performance of	78
	SUVmax of breast lesion in Discrimination of	
	ER&PR (positive and negative).	
Table 25	Diagnostic Performance of SUVmax of breast	78
	lesion in Discrimination of Her2/neu (positive and	
	negative).	

LIST OF ABBREVIATIONS

ACR	American College of Radiology
ACS	American Cancer Society
A_{inj}	Injected activity
A_{mea}	Measured activity
ANS	axillary nodal status
BGO	Bismuth germinate
BI-RADS	Breast imaging-Reporting and Data System
BRCA	Breast cancer gene
Bsa	Body surface area
BSGI	Breast-specific gamma imaging
Bw	Body weight
CC	Cranio-caudal
ceCT	Contrast-enhanced Computed Tomography
cLCIS	Classic LCIS
CT	Computed Tomography
DCIS	Ductal carcinoma insitu
ER	Estrogen receptor
¹⁸ FDG	¹⁸ F-fluorodeoxyglucose
¹⁸ F-FLT	¹⁸ F-fluorothymidine
¹⁸ F-MISO	¹⁸ F-misonidazole
GLUT	Glucose transporters
GSO	Gadolinium silicate

HER2	Human epidermal growth factor receptor 2
HRT	Hormone replacement therapy
IBC	Inflammatory breast cancer
IDC	Invasive ducal carcinoma
ILC	Invasive lobular carcinoma
Ki-67	Ki-67 labelling index
Lbm	Lean body mass
LCIS	Lobular carcinoma insitu
LM	Latero-medial
LSO	Lutetium oxyorthosilicate
Max	Maximum
MIP	Maximum intensity projection
ML	Medio-lateral
MLO	Medio-lateral-oblique
MM	Mammography
MRI	Magnetic Resonance Imaging
NOS	Not otherwise specified
NST	No special type
P53	Tumor protein p 53
PEM	Positron emission mammography
PERCIST	Positron Emission tomography Response Criteria In Solid Tumors
PET	Positron Emission Tomography
pLCIS	Pleomorphic LCIS
PR	Progesteron receptor
pTS	Pathologic tumor size

ROI	Region of Interest
SLNB	Sentinel lymph node biopsy
SUV	Standardized Uptake Value
Tc-99m	Technetium
TDLU	Terminal duct lobular units
TNM	Tumor-node-metastasis
TNR	Tumor to normal background ratio
US	Ultrasonography
W	Weight
WHO	World Health organization
Γ	Photons

INTRODUCTION

Breast cancer is considered the most common type of cancer and the second leading cause of cancer-related death among women. It affects more than 1 million women worldwide. The significant increase in number of cases worldwide could be attributed to modern lifestyle. (Abdulrahman and Rahman, 2012). (Taghipour et al., 2016).

The wide clinical success of PET/CT imaging in cancer relies mainly on the accumulation kinetics of 18F-fluorodeoxyglucose (FDG) that allows evaluation of the whole body without the need for complex mathematical analysis of tracer blood-tissue exchange (**Scussolini et al.,2019**)

Knowledge of the factors affecting the uptake is important when interpreting FDG PET/CT scans.(Groheux et al., 2011)

The incidence of breast cancer is increasing recently, yet the mortality rates are decreasing because of earlier diagnosis and new treatment strategies that include the molecular impact of breast cancer (Ekmekcioglu et al., 2013).

Outcomes for breast cancer vary according to the histological type, degree of disease, and patient's age. Approximately 30% of patients have recurrence within 15 years after initial treatment if later stage at the time of diagnosis (stage III) and hormone-receptor-positive. (Ferlay et al., 2012).

The prognostic factors include histological type, tumor nuclear grade, tumor size, and preoperative tumor-nodes-metastasis (TNM), hormone receptor and immunohistochemical molecular markers in the specimens (Choi et al., 2012).

Early diagnosis and accurate follow-up of these patients affect the management plan. Also early diagnosis of recurrence is important for planning future therapeutic strategies which, if initiated immediately, target either to cure or to prolong disease-free survival and to improve the quality of life (Israel and Kuten, 2007). Conventional imaging techniques include X-ray mammography, ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI). Nuclear medicine techniques also have an increasing role in diagnosing and staging of breast cancer. Previously, only bone scintigraphy was used for detection and follow-up of bone metastases. Other non-radiographic methods included clinical and physical examination,