

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY



# Effect of Axial Length on Full-Field and Multifocal Electroretinogram

#### Thesis

Submitted for Partial Fulfillment of the Master Degree in **Ophthalmology** 

### By

### **Noura Samir Mohamed Hamzawy**

M.B.B.Ch Faculty of Medicine, Ain Shams University

### Supervised by

### Prof. Dr. Tarek Ahmed El-Ma'mon El-Zarakany

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

### Prof. Dr. Amany Abd El-Fatah Ahmed El-Shazly

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

### Dr. Sameh Hany Abd El-Rahman Mohamed

Lecturer of Ophtalmology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020



سورة البقرة الآية: ٣٢

## Acknowledgments

First, I would like to thank **God** for blessing this work until it has reached its end, as a part of his generous guidance and help throughout my life.

I would like to express my sincere gratitude to **Prof. Dr.**Tarek Maamon, Professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his support, encouragement and the tremendous effort he has done in the thorough revision of the whole work.

I would like also to extend my thanks to **Prof. Dr.**Amany Elshazly, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University for her sincere guidance throughout this work whenever I ran into a trouble or had a question about my research or writing. She consistently allowed this paper to be my own work, but steered me in the right direction whenever she thought I needed it.

My sincere appreciation for **Dr. Sameh Hang**, lecturer of Ophthalmology Faculty of Medicine, Ain Shams University, who has taken the time and effort to read and modify this work.

I would like to thank all 30 participants for their cooperation, generosity and their patience.

Finally, I must express my very profound gratitude to my parents and to my husband for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Noura Samir Mohamed Hamzawy

## Tist of Contents

| Title                        | Page No. |
|------------------------------|----------|
|                              |          |
| List of Tables               | i        |
| List of Figures              | iii      |
| List of Abbreviations        | vi       |
| Introduction                 | 1 -      |
| Aim of the Work              | 3        |
| Review of Literature         |          |
| Electroretinography (ERG)    | 4        |
| Subjects And Methods         | 26       |
| Results                      | 36       |
| Discussion                   | 86       |
| Summary                      | 90       |
| Conclusion & recommendations | 92       |
| References                   | 93       |
| الملخص العربي                |          |

## Tist of Tables

| Table N           | o. Title                                                                                                      | Page No.               |
|-------------------|---------------------------------------------------------------------------------------------------------------|------------------------|
| Table (1)         | Clinical and demographic characteristics participants                                                         |                        |
| Table (2)         | Six- Rings Response Densities (RRD) of the pa                                                                 | articipants38          |
| Table (3)         | Ring P1 amplitude and P1 latency of the partic                                                                | ipants39               |
| Table (4)         | Ring N1 amplitude and N1 latency of the partic                                                                | cipants40              |
| Table (5)         | Four Quadrant Response Densities (QRD participants                                                            |                        |
| Table (6)         | Quadrant P1 amplitude and P1 latency participants                                                             |                        |
| Table (7)         | Quadrant N1 amplitude and N1 latency participants                                                             |                        |
| Table (8)         | Correlation between Axial Length (AL),<br>Equivalent (SE) and Six- Rings Response<br>(RRD) of the participant | Densities              |
| Table (9)         | Correlation between Axial Length (AL),<br>Equivalent (SE) and Ring P1 amplitude<br>participant                | e of the               |
| <b>Table</b> (10) | Correlation between Axial Length (AL),<br>Equivalent (SE) and P1 latency of the participa                     | 1                      |
| <b>Table</b> (11) | Correlation between Axial Length (AL),<br>Equivalent (SE) and Ring N1 amplitude<br>participant                | e of the               |
| <b>Table (12)</b> | Correlation between Axial Length (AL),<br>Equivalent (SE) and P1 latency of the participal                    | 1                      |
| <b>Table</b> (13) | Correlation between Axial Length (AL),<br>Equivalent (SE) and Quadrant Retinal Densi<br>participant           | ity of the             |
| <b>Table</b> (14) | Correlation between Axial Length (AL),<br>Equivalent (SE) and Quadrant P1 amplitude<br>participant            | Spherical<br>de of the |

## Tist of Tables (Cont...)

| Table N           | o. Title                                                                                         | Page No.  |
|-------------------|--------------------------------------------------------------------------------------------------|-----------|
| Table (15)        | Correlation between Axial Length (AL),<br>Equivalent (SE) and Quadrant P1 latence<br>participant | ey of the |
| <b>Table</b> (16) | Correlation between Axial Length (AL),<br>Equivalent (SE) and Quadrant N1 amplitu<br>participant | de of the |
| <b>Table</b> (17) | Correlation between Axial Length (AL),<br>Equivalent (SE) and Quadrant N1 latent<br>participant  | cy of the |
| <b>Table</b> (18) | Full-field clinical ERG parameters of the participa                                              | ants84    |
| <b>Table</b> (19) | Correlation between Axial Length (AL), Equivalent (SE) and full-field clinical ERG pa            | -         |

## List of Figures

| Fig. No.            | Title Page No                                                                                     |    |
|---------------------|---------------------------------------------------------------------------------------------------|----|
| Figure (1):         | Diagram of the six basic ERGs defined by the ISCEV Standard.                                      | 6  |
| <b>Figure (2):</b>  | A typical pattern of mfERG stimulus consists                                                      | 8  |
| Figure (3):         | Topographical presentation of the retinal response                                                | 9  |
| Figure (4):         | Hexagonal array geometry (retinal view) of 103 stimuli elements                                   | 10 |
| <b>Figure (5):</b>  | The multifocal electroretinogram (mfERG) display                                                  | 13 |
| Figure (6):         | The retinal origin of the multifocal electroretinogram signal                                     | 15 |
| <b>Figure</b> (7):  | Diagram of mfERG response to show the designation of the major features of the waveform           | 15 |
| <b>Figure (8):</b>  | A schematic diagram illustrates the mathematical derivation of the first and second order kernels | 17 |
| <b>Figure (9):</b>  | Positioning error                                                                                 | 19 |
| <b>Figure (10):</b> | Eccentric fixation                                                                                | 20 |
| <b>Figure</b> (11): | Positioning of the mf-ERG electrode                                                               | 30 |
| <b>Figure (12):</b> | The active electrode: HK- loop                                                                    | 31 |
| <b>Figure (13):</b> | Reference and ground electrode                                                                    | 31 |
| <b>Figure (14):</b> | The conductive paste used to fix the reference and the ground electrodes to the skin              | 32 |
| <b>Figure (15):</b> | Multifocal ERG by the RETI scan device                                                            |    |
| _                   | Ring display of the multifocal ERG                                                                |    |
|                     | Quadrant display of the multifocal ERG                                                            |    |
| <b>Figure (18):</b> | Gender of participants.                                                                           | 37 |
| <b>Figure</b> (19): | Correlation between Ring Response Densities (RRD1) and Axial length (AL)                          | 45 |
| <b>Figure (20):</b> | Correlation between Ring Response Densities (RRD2) and Axial length (AL)                          | 46 |
| <b>Figure (21):</b> | Correlation between Ring Response Densities (RRD3) and Axial length (AL)                          | 47 |

## Tist of Figures (Cont...)

| Fig. No.            | Title                                                                   | Page No.  |
|---------------------|-------------------------------------------------------------------------|-----------|
| <b>Figure (22):</b> | Correlation between Ring Response Densition and Axial length (AL)       |           |
| <b>Figure (23):</b> | Correlation between Ring Response Densities (Axial length (AL)          |           |
| <b>Figure (24):</b> | Correlation between Ring Response Densition and Axial length (AL)       |           |
| <b>Figure (25):</b> | Correlation between Ring1 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (26):</b> | Correlation between Ring2 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (27):</b> | Correlation between Ring3 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (28):</b> | Correlation between Ring4 P1 Amplitude amplitude) and Axial length (AL) | e (R4 P1  |
| <b>Figure (29):</b> | Correlation between Ring5 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (30):</b> | Correlation between Ring6 P1 Amplitude amplitude) and Axial length (AL) | e (R6 P1  |
| <b>Figure (31):</b> | Correlation between Ring1 N1 Amplitude amplitude) and Axial length (AL) | e (R1 N1  |
| <b>Figure (32):</b> | Correlation between Ring2 N1 Amplitude amplitude) and Axial length (AL) | e (R2 N1  |
| <b>Figure (33):</b> | Correlation between Ring3 N1 Amplitude amplitude) and Axial length (AL) | e (R3 N1  |
| <b>Figure (34):</b> | Correlation between Ring4 N1 Amplitude amplitude) and Axial length (AL) | e (R4 N1  |
| <b>Figure (35):</b> | Correlation between Ring5 N1 Amplitude amplitude) and Axial length (AL) | e (R5 N1  |
| <b>Figure (36):</b> | Correlation between Ring6 N1 Amplitude amplitude) and Axial length (AL) | e (R6 N1  |
| <b>Figure (37):</b> | Correlation between quadrant Response (QRD1) and Axial length (AL)      | Densities |

## Tist of Figures (Cont...)

| Fig. No.            | Title                                                                       | Page No.  |
|---------------------|-----------------------------------------------------------------------------|-----------|
| <b>Figure (38):</b> | Correlation between quadrant Response (QRD2) and Axial length (AL)          |           |
| <b>Figure (39):</b> | Correlation between quadrant Response (QRD3) and Axial length (AL)          |           |
| <b>Figure (40):</b> | Correlation between quadrant Response (QRD4) and Axial length (AL)          |           |
| <b>Figure (41):</b> | Correlation between quadrant1 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (42):</b> | Correlation between quadrant2 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (43):</b> | Correlation between quadrant3 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure</b> (44): | Correlation between quadrant4 P1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (45):</b> | Correlation between quadrant1 N1 Amplitud amplitude) and Axial length (AL)  |           |
| <b>Figure (46):</b> | Correlation between quadrant2 N1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure</b> (47): | Correlation between quadrant3 N1 Amplitude amplitude) and Axial length (AL) |           |
| <b>Figure (48):</b> | Correlation between quadrant4 N1 Amplitude amplitude) and Axial length (AL) | le (Q4 N1 |

## List of Abbreviations

| Abb.    | Full term                                                      |
|---------|----------------------------------------------------------------|
| AL      | Axial length                                                   |
| BCVA    | Best corrected visual acuity                                   |
| cds/m2  | Candela per square meter                                       |
| CRT     | Cathode ray tube                                               |
| ERG     | Electroretinography                                            |
| Ff-ERG  | full field electroretinography                                 |
| Hz      | Hertz                                                          |
| IOP     | Intraocular pressure                                           |
| ISCEV   | International society for clinical electrophysiology of vision |
| KOhm    | Kilo Ohm (unit of electric resistance)                         |
| LCDs    | Liquid crystal displays                                        |
| LogMAR  | Logarithm of minimal angle of resolution                       |
| Mf-ERG  | Multifocal electroretinography                                 |
| ms      | Millisecond                                                    |
| nV/deg2 | Nanovolt per degree squared                                    |
| QN1     | Quadrant N1 wave                                               |
| QP1     | Quadrant P1 wave                                               |
| QRD     | Quadrant response density                                      |
| RN1     | Ring N1 wave                                                   |
| RP1     | Ring P1 wave                                                   |
| RRD     | Retinal response density                                       |
| SD      | Standard deviation                                             |
| SE      | Spherical equivalent                                           |
| uV      | Microvolt                                                      |

#### **ABSTRACT**

Background: The Electroretinogram is a mass potential, which reflects the summed electrical activity of the retina. Full-field ERG measures the electrical signals from the whole retina in response to a light stimulus. The weakness of the full-field ERG is that it cannot provide topographical information regarding the functional integrity of the retina and cannot detect subtle functional defects. The response is dominated by the peripheral retina due to its predominance of retinal cells. Aim of the Work: to investigate the effect of axial length on fullfield (ffERG)and multifocal ERG (mfERG). Subjects and Methods: Forty-four eyes of 44 healthy subjects were included in this case series study which has been conducted at Ain shams university hospitals after the approval of the research ethical committee in the faculty of medicine, Ain Shams University between July 2018 and September 2019. Full ophthalmologic examination was performed for all participants, including visual acuity assessment (Best corrected visual acuity) using Snellen chart, calculation of spherical equivalent (SE), slit Lamp biomicroscopy examination with IOP measurement via Goldmann applanation tonometry (GAT), and fundus examination by indirect ophthalmoscope or via 90 D VOLK lens to assess macular area. Axial length measurement, ffERG & mf-ERG. Results; We found that in the absence of fundus changes, mfERG parameters showed decreased amplitudes with increase in axial length. The Six-Rings Response Densities showed negative correlation with AL while there is no significant correlation between Six- Rings Response Densities and SE. The Six-Rings P1 Amplitude showed negative correlation with AL while there is no significant correlation between P1 Amplitude and SE. The Six- Rings N1 Amplitude showed negative correlation with AL while there is no significant correlation between P1 Amplitude and SE. The four quadrant Response Densities showed negative correlation with AL while there is no significant correlation between four- quadrant Response Densities and SE. The four- quadrant P1 Amplitude showed negative correlation with AL while there is no significant correlation between P1 Amplitude and SE. The four- quadrant N1 Amplitude showed negative correlation with AL while there is no significant correlation between P1 Amplitude and SE. There is no significant correlation between fullfield clinical ERG parameters and both AL and SE. Conclusion: In the absence of fundus changes, mfERG parameters showed decreased amplitudes with increase in axial length. For correct interpretation of ERG responses in clinical practice, we recommend consideration of axial length measurement when evaluating mfERG responses.

**Key words:** Axial Length, Full-Field, Multifocal Electroretinogram

### Introduction

Lectroretinographic (ERG) responses provide objective quantification of retinal function. It is used to assess the function of retinal tissue. For example, ERG may be used to assess photoreceptors, neuronal cells (horizontal, bipolar, amacrine cells), and glia cells and their interaction. The full-field electroretinogram (ff-ERG) measures the whole function, whereas multifocal electroretinogram (mf-ERG) measures local function of the retina (*Ramya Sachidanandam, Priya Ravi, Parveen Sen, 2013*)

In normal eyes, ERG responses are influenced by various factors such as age (*Gerth et al., 2003; Marmor et al., 2009*), media opacities (*Hood et al., 2012*), systemic medications (*Sen et al., 2010; Melles and Marmor, 2014*), axial length (*Westall et al., 2001*) and refractive error (*Park et al., 2013*).

The axial elongation in myopia has been reported to produce retinal stretching (*Logan et al.*, 2004), retinal thinning (*Wakitani et al.*, 2003), reduced retinal cell density, enlarged photoreceptor inner segments (*Kawabata and Adachi-Usami*, 1997) and alteration of the regular arrangement of retinal neurons, which affects the signal transmission among different retinal layers (*Crewther*, 2000).