

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

The Relationship between Bariatric Surgery-Induced Weight Loss and Heart Rate Variability

Thesis

Submitted for Partial Fulfillment of Master's Degree in Cardiology

By
Mohamed Gamal Mostafa Morsy El Mikawy
MBBCH

Under supervision of **Prof. Dr. Mervat Abu EL Maaty Nabih**

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Haitham Abd El Fatah Badran

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Ahmed Yehia Ramadan

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mervat Abu && Maaty Mabih**, Professor of Cardiology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Haitham Abd El Fatah Badran**, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Yehia Ramadan**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Gamal El Mikawy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Obesity and Cardiovascular Outcome	4
Bariatric Surgery and Cardiovascular Outcom	e13
Heart Rate Variability (HRV)	17
Patients and Methods	
Results	
Discussion	48
Limitation.	
Conclusion & Recommendations	
Summary	56
References	
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Average values of heart rate varia	v
Table (2):	Demographic data	32
Table (3):	Holter data	34
Table (4):	PACs burden pre-operative and postope	erative 38
Table (5):	The HRV parameters pre-operative ar operative	-
Table (6):	The echocardiographic data pre-operative	
Table (7):	HbA1c pre-operative and postoperative	47

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Muscle insulin resistance and the 'tw hypothesis': roles of muscle, liv pancreas in the occurrence of T2 obesity.	er and 2DM in
Fig. (2):	Gastric bypass (Roux-en-Y gastric byp	oass)14
Fig. (3):	R-R intervals and there fluctuation	18
Fig. (4):	Time domain analysis and frequency analysis	
Fig. (5):	Electrodes positions during monitoring.	
Fig. (6):	Sex distribution in the study	33
Fig. (7):	The percentage of the diabetic patient study	
Fig. (8):	Pre- operative and post -operative BM	II35
Fig. (9):	Pre- operative and post -operative mean and the maximal heart rate	•
Fig. (10):	The positive relationship between B the minimal heart rate	
Fig. (11):	The positive relationship between B the mean heart rate.	
Fig. (12):	The positive relationship between B the maximal heart rate	
Fig. (13):	PACs burden pre-operative and postor	perative39
Fig. (14):	Pre-operative and postoperative time parameters.	
Fig. (15):	Pre-operative and postoperative fredomain parameter	equency
Fig. (16):	The reverse relationship between B SDNN	MI and

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (17):	The reverse relationship between rMSSD.	
Fig. (18):	The positive relationship between LF /HF ratio	
Fig. (19):	HbA1c pre-operative and postopera	ative47

List of Abbreviations

Abb.	Full term
BMI	. Body mass index
	.Biliopancreatic diversion
	. Cardiovascular disease
HbA1C	. Glycated hemoglobin
	. High Frequency
HRV	. Heart rate variability
HS	. Highly significant
<i>IHD</i>	.Ischemic heart disease
<i>IL</i>	. Interleukin
<i>IVSD</i>	.Inter ventricular septum diameter
<i>LF</i>	.Low Frequency
LVEDD	. Left ventricular end diastolic diameter
LVEF	.Left ventricular ejection fraction
LVESD	.Left ventricular end systolic diameter
LVH	.Left ventricular hypertrophy
<i>NCEP</i>	.National Cholesterol Education Panel
<i>NS</i>	.Non significant
<i>PACs</i>	. Premature atrial contraction
PVCs	. Premature venticular contraction
<i>PWD</i>	.Posterior wall diameter
<i>RVD</i>	.Right ventricular diameter
<i>RVSP</i>	.Right ventricle systolic pressure
<i>RYGB</i>	.Roux-en-Y gastric bypass
S	. Significant
TG	. Triglycerides
<i>TNF</i>	. Tumor necrosis factor
	. Tissue plasminogen activator
	. Ultra Low Frequency
<i>VLF</i>	. Very Low Frequency

Introduction

Obesity is one of the greatest public health challenges of current times, with over 2.6 million people dying annually as a result of being overweight (World Health Organization, 2011).

Altered autonomic nervous system activity has been reported in patients with obesity (Abate et al., 2001). Indeed, sympathetic overactivity has also been described in association with obesity (Gao et al., 1996); and spectral analysis showed decreased Heart rate variability (HRV) with weight gain (Poirier et al., 2003).

A high body mass index (BMI) is significantly associated with myocardial infarction, coronary insufficiency, and sudden death; the association seems strongest with sudden death (Rabkin et al., 1977). Although, obesity alone is considered a major modifiable risk factor for ischemic heart disease (Eckel et al., 1998).

Moreover, Weight-stable obese subjects have increased risk of arrhythmias and sudden death, even in the absence of cardiac dysfunction, and the risk of sudden cardiac death with increasing weight is seen in both genders (Rabkin et al., 1977).

Heart rate variability (HRV) refers to the variation in intervals between heartbeats and reflects cardiac autonomic

modulation, which is influenced in a favorable way by increased parasympathetic activity (Peterson et al., 1988).

Weight loss after diet or gastroplasty in morbidly obese patients has been shown to reverse the deleterious impacts of obesity on cardiac autonomic nervous system modulation, with subjects showing enhanced HRV after reduction in body mass index (BMI), through increased cardiac vagal modulation (Karason et al., 1999).