

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cesarean section incisional infiltration with lidocaine and Epinephrine versus Lidocaine alone in reducing postoperative pain. A randomized controlled double-blinded clinical trial

AThesis

Submitted for partial fulfilment of Master degree in Obstetrics & Gynecology

By

Hend Maher Afifi

M.B.B.Ch (Resident at Al-Sheikh Zaid General Hospital)

Under the Supervision of

Prof. Dr. Hazem Fadel El-Shahawy

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Prof. Dr. Sherif Fathi El-Mekkawi

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. Haitham Fathy Mohmmed

Lecturer of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Protocol	•••••
Introduction	1
Aim of the Work	4
Review of Literatrue	
Caesarean Section	5
Postoperative pain	31
Local Anaesthesia	41
Patients and Methods	49
Results	60
Discussion	69
Summary	74
Conclusion	78
Recommendations	79
References	80
Arabic Summary	<u> —</u>

List of Abbreviations

Full-term

ABP : Arterial blood pressure

466r.

ACCP : American college of Clinical Pharmacy

ACOG : American College of Obstetricians and Gynecologist

Aps : Action potentials

CNS : Central nervous system

CS : Cesarean section

ERCD : Elective repeat cesarean delivery

HCV: Hepatitis C virus

HIV : Human immunodeficiency virus

HPV: Human papilloma virus

ITP : Idiopathic thrombo-cytopenic purpura

IUGR : Intrauterine growth restriction

MEGX : Metabolites monoethy glycinexylidide

NSAIDS : Non-steroidal anti-inflammatory drugs

RCOG : Royal College of Obstetricians and Gynecologist

RR : Respiratory rate

SD : Standard deviation

SPSS : Statistical Package for Social Sciences

TED: Thromboembolic disease

TOLAC: Trial of labor after cesarean delivery

VAS : Visual analogue scale

VDS : Verbal descriptor scale

VLBW: Very low birth weight

VNRS: Verbal numerical rating scales

VTE : venous thromboembolism

WHO: World Health Organization

List of Tables

Table No	. Title	Page No.
Table (1):	Comparison between group A: Alone and group B: Lidocaine El according to baseline characterists	pinephrine
Table (4):	Comparison between group A: Alone and group B: Lidocaine El according to time of first analge (hrs).	oinephrine esia asked
Table (5):	Comparison between group A: Alone and group B: Lidocaine El according to secondary outcome.	pinephrine
Table (6):	Comparison between group A: Alone and group B: Lidocaine Epaccording to VAS score	pinephrine
Table (7):	Comparison between group A: Alone and group B: Lidocaine Epaccording to postoperative complete	pinephrine

List of Figures

Figure N	To. Title	Page No.
Figure (1):	Skin incisions	17
Figure (2):	Uterine incisions	20
Figure (3):	Wound infection	27
Figure (4):	Low placental insertion	29
Figure (5):	Pain pathway (Franck, 2000)	33
Figure (6):	Pain assessment scales (Robert, 2010	<i>)</i>)35
Figure (7):	Bar chart between group A: Lide Alone and group B: Lide Epinephrine according to time of analgesia asked (hrs).	ocaine first
Figure (8):	Bar chart between group A: Lido Alone and group B: Lidocaine Epiner according to breast feeding mobilization.	ohrine and
Figure (9):	Comparison between group A: Lido Alone and group B: Lido Epinephrine according to VAS score	caine

Introduction

Vesarean section (C/S) is the most frequent obstetric surgery performed worldwide (Wae et al., 2017).

Pain is an upsetting feeling that usually delays a patient's recovery and can be accompanied by tissue damage. Proper pain assessment provides crucial information that helps in diagnosing various types of pain, such as somatic, neuropathic, or visceral pain (*Kerai et al.*, 2017).

Unfortunately, to date, postoperative pain is not properly controlled because of many factors. One of these is the inability to efficiently put into action pain management protocols, together with the lack of precision of pain assessment techniques (*Schoenwald et al.*, 2006).

Other factors include wrong beliefs and the patient's high expectations. There is usually a lack in customizing analgesic strategies to satisfy the patients' requirements. Acute pain has deterimental effects if left untreated because it results in acute neurohumoral changes, neuronal re-modeling, depression, anxiety, insomnia, loss of control, inability to sense and communicate with others, and long-lasting psychological and emotional illness and may also end up in prolonged chronic pain states (*Coll et al.*, 2004).

Post-cesarean delivery pain relief is important. Good pain relief will improve mobility and can reduce the risk of thromboembolic disease, which is increased during pregnancy. Pain may also impair the mother's ability to optimally care for her infant in the immediate postpartum period and may adversely affect early interactions between mother and infant. Pain and anxiety may also reduce the ability of a mother to breast-feed effectively (*Gadsden et al.*, 2005).

Several studies have been conducted to evaluate the efficacy of different post-partum pain management protocols for cesarean section (*Ghenaee et al.*, 2015).

Usually, high doses of opioid analgesics are necessary to ease severe postoperative pain, however, this strategy has many disadvantages, such as evident disruption of mother–newborn bonding, sedation, respiratory depression, nausea and vomiting, hypotension, bradycardia, pruritus, and inhibition of bowel function (*Sakalidis et al.*, 2013).

On the other hand, pain control method depends on individual variability such as age, genetic, psychological factors and also sensitivity to pain. These methods might vary in different region and center regard to their facilities (*Ritter et al.*, 2008).

Local anesthesia is of help because of the decreased opioid consumption and it can be used because of its affordability as part of the smart strategic protocol for pain relief (*Bamigboye et al.*, 2010).

Local analgesics usage during surgery has fewer side effects in compare with opioids or neuro-axial method (*Cunningham et al.*, 2010).

In a study assessing the maternal and fetal outcomes of local wound infiltration with lidocaine alone either preincisionally, postincisionally or combined in elective C/S, it showed that combined pre- and postincisional local wound infiltration is superior to each one alone in pain relief (*Fouladi et al.*, 2013).

Aim of the Work

This study aims to assess the efficacy and safety of incisional infiltration of lidocaine and epinephrine versus lidocaine only to reduce post-C/S pain and thus enhance the patient's recovery.

Chapter (1) Caesarean Section

Paesarean delivery also known as a C-section is a surgical procedure used to deliver a baby through an incision in the mother's abdomen (laparotomy) and a second incision in the mother's uterus (hystrotomy). This definition does not include removal of the foetus from the abdominal cavity in cases of uterine rupture nor in cases of abdominal pregnancy (*Cunningham et al.*, 2007).

Caesarean delivery now is the most common obstetric intra peritoneal operation, and the number of caesarean deliveries is increasing worldwide (**Antonio M, 2009**). Up to that in many settings it may be done without any medical indication which may contribute to this secular trend towards higher rates (*Stjernholm*, 2010).

Despite this, there is no widely accepted technique for performing CS, numerous approaches have been described and technique often varies from surgeon to surgeon (*Colin Walsh*, 2010).

Incidence of caesarean section

Based on the following statement by a panel of reproductive health experts at a meeting organized by the World Health Organization (WHO) in 1985 in Fortaleza, Brazil: "There is no justification for any region to have a rate

higher than 10-15%" this was the ideal rate (World Health Organization. Statement on Caesarean Section Rates).

Studies from across the world have shown that the cesarean section rate may be influenced by factors other than the ability to pay, including fear of litigation, convenience, perceived safety, fear of substandard care and the opportunity for sterilization (*Béhague et al.*, 2002).

Cesarean section rates in Egypt

In Egypt, the nearly 60% population-based proportion of C-sections performed in 2014 greatly exceeds the threshold of 10–15% recommended by WHO (*World Health Organization*. *Statement on Cesarean Section Rates.*).

The institutional-based proportion (67.3%) of C-sections recorded in Egypt in 2014 is 2.2-time and 2.7-time higher than that recently recorded in Jordan (30.3%) and in Saudi Arabia (25%) respectively (*Al Rifai et al.*, 2014).

Indications of Caesarean Sections

I. Maternal Indications:

1 - Maternal diseases:

 Gestational hypertensive disease, preeclampsia, and eclampsia are relative maternal indication for section depending upon severity of the disease.