

Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Voltage Regulation of Active Distribution Networks

By Eng. / Beshoy Nabil Fahmy Fanous

B.Sc. Electrical Engineering, Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Supervised by

Prof. Dr. / Hossam El-Din Abdullah Talaat

Faculty of Engineering, Ain Shams University

Dr. / Mohammed Hassan Mohammed Ahmed Soliman

Faculty of Engineering, Ain Shams University

EXAMINERS COMMITTEE

Name: Beshoy Nabil Fahmy Fanous

Thesis title: Voltage regulation of active distribution networks

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Hossam El-Din Abdullah Talaat

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Prof. Dr. Naser Mohammed Bayoumy Abdel-Rahim Elghetany

Professor of Electric Power Department of Electrical Engineering Faculty of Engineering, Benha University

Prof. Dr. Said Fouad Mohamed Mekhamer

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Beshoy Nabil Fahmy Fanous

Thesis title: Voltage regulation of active distribution networks

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Hossam El-Din Abdullah Talaat

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Dr. Mohammed Hassan Mohammed Ahmed Soliman

Assistant Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

RESEARCHER DATA

Name: Beshoy Nabil Fahmy Fanous.

Date of birth: 26/06/1992.

Place of birth: Cairo.

Academic Degree: Bachelor of Science (B.Sc.) in Electrical Engineering.

Field of Specialization: Electrical Power and Machines.

University issued the degree: Faculty of Engineering, Ain Shams University.

Date of issued degree: 2014.

Current job: Demonstrator in Faculty of Engineering, Ain Shams University.

Email: beshoy.nabil@eng.asu.edu.eg

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements for M.Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the department of electrical power and machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Beshoy Nabil Fahmy Fanous
Signature:
Date: /

ACKNOWLEDGEMENT

First and foremost, praises and thanks to God for blessings throughout my

research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research

supervisor, Prof. Dr. Hossam EL-Din Abdullah Talaat, Professor of Electrical

Engineering, Faculty of Engineering, Ain-Shams University, for giving me the

opportunity to do research and providing invaluable guidance throughout this

research. His dynamism, vision, sincerity and motivation have deeply inspired me.

It was a great privilege and honor to work under his guidance.

I would like to express my deep and sincere gratitude to my research

supervisor, Dr. Mohammad Hassan Soliman, Assistant Professor of Electrical

Engineering, Faculty of Engineering, Ain-Shams University, for his close

supervision, valuable guidance, encouragement, and kind criticism. He has taught

me the methodology to carry out the research and to present the research works as

clearly as possible. I am extremely grateful for what he has offered me. I would

also like to thank him for his friendship, empathy, and great sense of humor.

Finally, I am extremely grateful to my parents and friends for their love and

prayers. My thanks go to all the people who have supported me to complete the

research work directly or indirectly.

Beshoy Nabil Fahmy Fanous

vi

ABSTRACT

The amount of non-centralized generation connected to distribution networks nowadays is still increasing. The structure and control methods of existing distribution networks are planned and operated assuming unidirectional power flows. Distributed generation (DG) affects power flows in the distribution networks and its effect on their operation can be positive or negative depending on the size, location and time variation of the generator. Anyways, DGs force the operational and planning principles of distribution networks to be changed radically. The voltage rise is usually the factor that limits the hosting capacity of the networks for DG. At the meantime, this rise is often handled by passive means such as increasing the conductor size or connecting the generator to a specially constructed feeder. These passive means keep the traditional principles of the operation of networks but leads to high connection costs of DGs and do not sufficiently increase their hosting capacity.

Modern means referred as active voltage control methods change the network operational principles radically but leads to significantly smaller total costs of the distribution network and higher hosting capacity for DG than the passive approach. These methods can utilize active resources such as DGs in their control in addition to the existing voltage control equipment such as the main transformer tap changer. However, the implementations of active control approach in real distribution networks are still very low and the distribution network operators (DNOs) do not consider that approach as a real option in planning. Hence, much work is still required to enable the widespread utilization of active voltage control.

This thesis aims at overcoming some of the existing challenges of applying active voltage control strategies in real distribution networks. In this thesis, a previously published active voltage control algorithm is developed in order to

achieve economically optimized results. Moreover, the developed algorithm is tested using real time simulations through Hardware-In-The-Loop (HIL) technique of simulation tests to verify the reliability of its dynamics. The software utilized is MATLAB Simulink while the hardware component is an ATmega2560 microcontroller included as a built-in component in an Arduino Mega 2560 board.

This thesis addresses an unhandled problem resulted from the failure of communication with the DGs in case of coordinated active voltage control methods. An alternative algorithm is proposed to be applied in these emergent cases to avoid the full disconnection of the generator. This achievement makes the implementation of coordinated active control methods more reliable and applicable for the real world.

The target of this thesis is to provide additional support to the DNOs for the implementation of active voltage control methods and make this issue as easy as possible. All the developed and proposed algorithms in this thesis can be implemented as a part of the existing distribution management systems (DMS) and utilize the already existing data transfer infrastructure of SCADA.

TABLE OF CONTENTS

RES	EAl	RCHER DATA	iv
STA	TE	MENT	V
ACI	KNC	OWLEDGEMENT	vi
ABS	STR	ACT	.vii
TAE	BLE	OF CONTENTS	ix
LIS	ГΟ	F FIGURES	.xii
LIS	ГОІ	F ABBREVIATIONS	xiv
1	INT	RODUCTION	1
1.	1 l	Background	2
1.2	2 (Challenges for active voltage control	4
1	3 \$	Solutions needed for these challenges	6
1.4	4 (Objectives of the thesis	7
1.:	5 1	Limitations of the thesis	8
1.0	6 5	Structure of the thesis	9
2	VOI	LTAGE CONTROL PRINCIPLES IN DISTRIBUTION NETWORKS	5
INC	LUI	DING DISTRIBUTED GENERATION	.11
2.	1 '	Voltage level	.12
2.2	2 1	Passive voltage control principles	.15
2.3	3 1	Interactions of DGs with the passive control principles	.19
2.4	4 I	Passive tools for the interconnection of DGs	.21
2.5	5	Active tools for the interconnection of DGs	.22
,	2.5.1	OLTC transformer	.23
,	2.5.2	2 Absorption of reactive power using DGs	.23
,	2.5.3	3 Curtailment of possible real output power of DGs	.25

3	TH	IE P	ROPOSED ALGORITHM OF ACTIVE VOLTAGE CONTROL	.27
	3.1	Ba	ckground	.27
	3.1	.1	Local reactive power control at a local scale	.29
	3.1	.2	Local active power control at a local scale	.29
	3.1	.3	Active voltage control at a coordinated level	.30
	3.2	Pro	oposed coordinated voltage control algorithm	.31
	3.2	2.1	Basic Control	.36
	3.2	2.2	Restoring control	.39
	3.2	2.3	Modifications done upon the algorithm	.44
4	HA	ARD	WARE-IN-THE-LOOP (HIL) SIMULATIONS	.45
	4.1	Co	nnection and operation	.45
	4.2	Be	nefits of HIL	.49
	4.2	2.1	Safety	.49
	4.2	2.2	Quality Enhancement	.49
	4.2	2.3	Time saving	.50
	4.2	2.4	Money saving	.50
	4.2	2.5	Interaction of the human factor	.51
	4.3	De	velopment of research in power studies	.52
	4.4	The	e HIL platform in this thesis	.52
5 C			RNATIVE STANDALONE ALGORITHM IN CASE OF LOSS OF STANDALONE ALGORITHM IN CASE OF LOSS OF STANDALONE	
	5.1 dece		e interaction between the coordinated control and the standalone lized control algorithms	.56
	5.2	The	e required conditions of the standalone local algorithm	.58
	5.3	The	e stages of the standalone local voltage control algorithm	.59
	5.4	Teo	chnical aspects	.61

6 SIMU	LATION RESULTS AND DISCUSSIONS	62
6.1 TI	he coordinated voltage control with all DG units communicated.	68
6.1.1	Chronological sequence	68
6.1.2	Discussion	73
6.2 TI	he decentralized control algorithm in case of loss of communicat	ion
with the	DNO	75
6.2.1	Chronological sequence	80
6.2.2	Discussion	83
6.3 TI	he coordinated voltage control in case of disconnection of the DC	3 unit
that lost	the communication with the DNO	84
6.3.1	Chronological sequence	86
6.3.2	Discussion	86
6.4 O	verall results	87
7 CON	CLUSIONS AND RECOMMENDATIONS FOR FUTURE	
RESEAR	CH	88
REFERE	NCES	90

LIST OF FIGURES

Figure 2.1. A simplified model of a two-bus system
Figure 2.2. Phasor diagrams of voltages of the two-bus system: a) Bus 2 is a load
bus (P is positive.) b) Bus 2 is a generation bus (P is negative.)15
Figure 2.3. Voltage profile of a radially operated distribution feeder of only loads.
Figure 2.4. Line-drop compensation of an AVC relay18
Figure 2.5. Time domain operation of an AVC relay using definite time characteristics
Figure 2.6. Voltage profile of a radially operated distribution feeder of loads and a generation
Figure 2.7. Schematic diagram of the reactive power control of a synchronous generator.
Figure 3.1. Evolution of voltage control activity in active distribution networks.
Figure 3.2. The flow chart of the operation of the basic control37
Figure 3.3. The flow chart of the operation of the restoring control41
Figure 4.1 The general structure of HIL system
Figure 4.2 Time step of real-time systems
Figure 4.3 Overruns of real-time systems
Figure 4.4 The development process of active control
Figure 5.1. The combination of the coordinated and standalone algorithms constructed locally at the DG

Figure 5.2. The alternative standalone control algorithm to be activated by a DG
unit in case of loss of communication with the DNO60
Figure 6.1. The example network.
Figure 6.2. The process cycle of the HIL technique67
Figure 6.3. The maximum and minimum voltages of the network in addition to the substation voltage with its OLTC reference during the coordinated voltage control communicated with all DG units.
Figure 6.4. The reference signals of the reactive and active powers of the DG units during the coordinated voltage control communicated with all DG units70
Figure 6.5. The entire results of the execution of voltage control algorithm in real time at a coordinated scale and communicated with all DG units
Figure 6.6. A comparison of the curtailed real powers of the two algorithms74
Figure 6.7. The maximum and minimum voltages of the network in addition to the substation voltage with its OLTC reference during the coordinated voltage control losing communication with DG unit no. 3
Figure 6.8. The reference signals of the active and reactive powers of the DG units during the coordinated voltage control losing communication with DG unit no. 3
Figure 6.9. The voltage, active power and reactive power of the DG unit no. 3 that had lost communication with DNO
Figure 6.10. The entire results of the execution of voltage control algorithm in real time at a coordinated scale with the loss of communication with DG unit no. 3 that has an alternative standalone decentralized algorithm.
Figure 6.11. The entire results of the execution of voltage control algorithm in real time at a coordinated scale with the entire disconnection of DG unit no. 3

LIST OF ABBREVIATIONS

AMR Automatic meter reading

AVC Automatic voltage control

AVR Automatic voltage regulator

DB Dead band

DC Direct current

DG Distributed generation

DER Distributed energy resource

DMS Distribution management system

DNO Distribution network operator

EU European Union

HIL Hardware-in-the-loop

HV High voltageI/O Input/output

IT Information technology

LV Low voltage

MPPT Maximum power point tracking

MV Medium voltage

NIS Network information system

OLTC On-load tap changer

p.u Per unit

PV Photovoltaic

RMS Root mean square

RTD Real-time data

SCADA Supervisory Control and Data Acquisition

THD Total harmonic distortion

TSO Transmission system operator

UART Universal Asynchronous Receiver/Transmitter

1 INTRODUCTION

Over the last century, many large centralized power plants are used to produce electricity. The locations and capacities of these plants are planned in coordination with the whole traditional power system. The electricity is then transferred to the loads locations through the transmission network and several distribution networks. The transmission network is used to connect the whole country including the locations of generation of electricity and those of loads. The transmission and distribution networks are planned in previous and operated by means of many studies such as power flow studies, geographical studies, etc. The traditional concept of planning and operation of the medium and low voltages distribution networks is based on the assumption that the flow of power is unidirectional in a downstream way from the substation to the nearby loads and that all components connected at various buses of the distribution networks are passive. The passive control of components means that their operation of supplying or consuming power is not determined based on the network state.

One of the tremendous and effective trends nowadays in modern power systems is the transition from centralized power plants towards the high penetration of non-centralized distributed generation (DG), mostly connected at the terminals of the medium and low voltages distribution networks. There are substantially increasing investments put in the field of DGs, especially the renewable sources because of environmental and political aspects and the need of security of supply. Most countries incentivize these investments. For example, the governments of the European Union (EU) were working their best to meet a resounding target declared by EU that the renewable resources share by 20 % of the total energy produced in EU by 2020 [1]. Many other countries have applied feed-in tariffs for the purpose of production of renewable energy too resulting in a continuous increase of DG. In addition, other distributed energy resources