سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Fibular Hemimelia

An Essay
Submitted in Partial Fulfillment for the Master Degree in
Orthopedic Surgery

by Hazem Mohamed Al-Deep (M.B.B.Ch.)

Supervised By

Prof. Dr. MOHAMED SAMY EL-ZAHAAR

Professor of Orthopedic Surgery Benha Faculty of Medicine Zagazig University

Prof. Dr. GAMAL AHMED HOSNY

Assistant Professor of Orthopedic Surgery Benha Faculty of Medicine Zagazig University

> Benha Faculty of Medicine Zagazig University

> > D

10477

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنكا إلا ما علمتنا إنكأنت العليم الدكيم

صدق الله العظيم ((البقرة آية ٣٢)

DEDICATION

THIS ESSAY IS DEDICATED TO MY PARENTS
MY WIFE AND MY LOVELY CHILDREN
FOR WHOM WORDS CANNOT EXPRESS GRATITUDE

ACKNOWLEDGMENT

First of all, thanks to Allah.

I would like to express my deepest thanks to **Prof. Dr.**Mohamed Samy El-Zahaar, Professor of Orthopedic Surgery,
Benha Faculty of Medicine, Zagazig University, for his sincere advises, help, fatherly assistance and reassurance.

My sincere thanks to Prof. Dr. Gamal Ahmed Hosny, Assistant Professor of Orthopedic Surgery, Benha Faculty of Medicine, Zagazig University, for his kind supervision, sincere assistance and for everything he offered me.

Finally, I would like to thank all members of Orthopedic Surgery Department, for their valuable help and assistance in this work.

CONTENTS

	Page
- LIST OF FIGURES	
- LIST OF TABLES	
- INTRODUCTION	1
- DEVELOPMENT OF LEG BONES	5
- REVIEW OF LITERATURE	14
• Incidence and Etiology	14
• Pathological Anatomy	16
• Classification of Fibular Deficiency	21
• Management of Fibular Hemimelia	31
•Comparison to outcome measurement after	amputation and
lengthening	60
- SUMMARY	62
- REFERENCES	65
- ARABIC SUMMARY	

LIST OF FIGURES

Figure		Page
Fig. 1	Steps of endochondral ossification.	7
Fig. 2	Progressive expansion of the primary ossification	
	center (5) toward the epiphysis (1) delines the	
	serminal (2), columnar (3), and hypertophic (4)	
	regions of the physis. While this process is	
	occurring (endochondral ossification), the	
. 1	periosteum (p) is forming laminar bone (arrows),	
	which is remodeled to form cortical (lamellar) bone.	9
Fig. 3	Composite of all the processes. Progressive	
	expansion of the endochondral cones elongates the	
	bone. At the same time, the conical apices are being	
	replaced by the expanding arrow cavity (tubulation).	
	The periosteal membranous bone (*) fills in the	•
	space between the endochondral cones. Within this	
	initially woven bone, lamellar bone (stippled)	
	progressively forms and proceeds forward the base	
·	of each bone.	12
Fig. 4	Fibular Hemimelia.	17
Fig. 5	Lateral radiograph of the foot of a five-year and six-	
	month-old boy who had type II fibular hemimelia	
	and four rays. A definite talocalcaneal coalition can	
	be seen.	18
Fig. 6	Dorsal view of an anatomical specimen with a	
	major talocalcaneal coalition. The articular surface	·
	of the talus is evident, and the unsegmented	·
	calcaneus is in severe vulgus orienation relative to	
	the talus.	19

Figure		Page
Fig. 7	Achterman and Kalamchi Classification.	23
Fig. 8	Type I fibular hemimelia.	44
Fig. 9	Type I fibular hemimelia.	46
Fig. 10	Type II fibular hemimelia.	48
Fig. 11	Tibial and foot frame construct.	49
Fig. 12	A and B fibular lengthening.	50
Fig. 13	Type III fibular hemimelia.	51
Fig. 14	A and B Enquinovalgus foot deformity correction.	. 54
Fig. 15	Enquinovalgus foot deformity correction.	56
Fig. 16	Paley Classification.	59

LIST OF TABLES

Table		Page	
Table 1	Coventry and Johnson three-part classification of	22	
	fibular dysplasia.		
Table 2	Achterman and Kalamchi, classification system.	23	
Table 3	Fibular deficiency: Birch's functional classification		
	with treatment guidelines.	25	
	·		
		÷	
	·		
·		•	
		·	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Introduction

INTRODUCTION

The term fibular hemimelia implies a congenital absence of all or part of the fibula.

Fibular hemimelia the most common long bone congenital absence or hypoplasia, was first described by Gollier, (1698).

The term melia is derived from the greek melos, meaning limb amelia denotes absence of the entire limb hemimelia refers to loss of half the limb as described by **Frantz**, (1961).

Extensive studies of complete fibular absence and the anomalies associated with it have reported in the past (Coventry and Jonhason 1952; Thompson et al., 1957; Framer and Lauren, 1969; Janson and Anderson 1974 & Kalamchi, 1979).

The appearance of a limb with fibular deficiency can vary from barely detectable to severely deformed. The typical limb is characterized by a valgus foot, shortening of the leg, variable anterior bowing of the tibia with a dimple over the apex, and variable valgus of the knee. The foot is often deformed, missing