

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Women for Arts Science and Education Physics Department

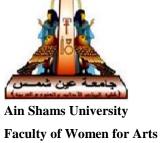
Comparative Study for the Production of a Selected Radionuclides Via Different Nuclear Reaction Routes

Thesis Submitted for the Partial Fulfillment of Master Degree in Physics (Nuclear Physics)

By: Doha Adel Awies Mohamed B.Sc. in Physics, 2015

Supervised by

Prof. Dr. Magda Mohamed El Sayed Abd El Wahab


Professor of Nuclear Physics
Physics Department
Faculty of Women for Arts
Science and Education
Ain Shams University

Prof. Ass. Dr. Zeinab Yousef Morsy

Assistant Professor of Nuclear Physics
Physics Department
Faculty of Women for Arts,
Science and Education,
Ain Shams University

Prof. Ass. Dr. Gehan Yousef Mohamed

Assistant Professor of Nuclear Physics
Physics Department
Nuclear Research Center
Atomic Energy Authority-Egypt

Faculty of Women for Arts Science and Education Physics Department

Approval Sheet

Comparative Study for the Production of a Selected Radionuclides Via Different Nuclear Reaction Routes Name of candidate Doha Adel Aweis Mohamed

Supervised by

Signature

Prof. Dr. Magda Mohamed El Sayed Abd El Wahab

Prof. Ass. Dr. Zeinab Yousef Morsy

Prof. Ass. Dr. Gehan Yousef Mohamed

Approval Stamp

Date of Approval

/ / 2020

/ / 2020

Approval of faculty Council

Approval of University Council

/ / 2020

/ / 2020

***************** 米 米 ******** 米 米 米 *** * 米 *** 米 *** *** قال الله نعالى : ****** 米 ﴿ يَرْفَعِ ٱللَّهُ ٱلَّذِينَ ءَامَنُوا مِنكُمْ وَٱلَّذِينَ أُوتُوا 米 ٱلْعِلْمَ دَرَجَنَتٍ وَٱللَّهُ بِمَا تَعْمَلُونَ خَبِيرٌ ١١٠ ﴾ 米 米 سورة المجادلة * *** * * 米米 米 米 米 米 * 米 米 米 * 米 米 米 ****************

Acknowledgement

First and foremost, infinite praises and thanks are to *ALLAH* for his supported throughout my research work to complete the research successfully.

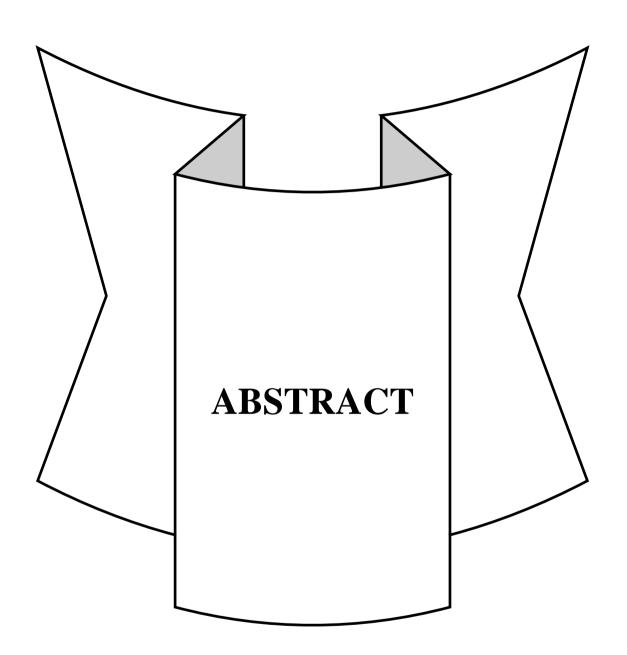
Special and great thanks to *Prof. Dr. Mogahed Al-Abyad*, professor of nuclear physics and supervisor of the cyclotron project in Inshas for his kindness, continuous guidance, generous assistance through the experimentation and all steps of this work.

I would like to express my deep and sincere gratitude to *Prof. Dr. Magda Abd El Wahab*, for providing invaluable guidance. I would also like to thank her for the kind supervision, continuous attention, helpful discussions, guidance and encouragement throughout this study.

I would like to express my great thanks to *Prof. Ass. Dr. Gehan Yousef*, for her kind supervision, guidance, encouragement, providing many suggestions, trustful help in the calculations and constant support during this study.

I would like to express my thanks and gratitude to *Prof. Ass. Dr. Zeinb Yousif*, for her kindness and care, guidance and continuous encouragement and advices.

I would like to say thanks to *Dr. Eman Salem* lecturer of nuclear physics, faculty of women for arts, science and education, Ain Shams University for her kindness, honest guidance, continuous helpful and advices.


My great thanks to *Prof. Dr. Manal Serag*, head of physics department, and to all staff members of the department, faculty of women for arts, science and education, Ain Shams University for their kindness and support.

I wish to express my great thanks for cyclotron crew in Inshas Egypt. This work would have not been possible without the efforts of them.

I am extending my heartfelt thanks to my family, especially my mother for her caring, prayers and continuing support to complete this work.

Finally, my thanks go to all the people who have supported me to complete the research work directly or indirectly.

Doha Adel Awies

ABSTRACT

Studies of excitation functions of charged particles induced reactions play an important role in many practical applications in medicine, industry, agriculture. Induced nuclear reactions are of considerable significance for evaluating their use as monitor reactions for determining the energy and intensity of the bombarding beam. As well as for optimization of the beam parameters in the thin layer activation technique (TLA) used for wear, corrosion or erosion measurements.

Nickel is an important element from practical point of view, being used as a target material in accelerator production of medical radionuclides.

The proton induced reaction cross section of nickel has a wide range of applications in nuclear technology. It also plays an important role for the production of isotopes such as ^{60,61,64}Cu, ^{55,57,58}Co and ⁵⁷Ni. ⁶¹Cu and ⁶⁴Cu are very important radiomedical isotopes, both are promising in nuclear medicine.

The well-known stacked foil technique in combination with HPGe γ -ray spectroscopy was used. The measured data compared with the previously reported experimental data and also with the results of theoretical calculations using nuclear models codes ALICE-IPPE and EMPIRE-

3.2.2 as well as TENDL-2017. The present results agree well with the previously reported experimental data, the calculations of the theoretical nuclear models codes ALICE-IPPE and EMPIRE-3.2.2 as well as TENDL-2017.

The excitation functions were measured for nuclear reactions induced by protons on natural Nickel in the energy range from threshold energy up to 14.7 MeV leading to the production of ^{60,61,64}Cu, ^{55,57,58}Co and ⁵⁷Ni radionuclides. The maximum cross section value for ⁶⁴Cu is about 734mb at 10.56 MeV, while the maximum cross section value for ⁶⁰Cu is about 107mb at 12.5 MeV.

The integral yields (MBq/ μ A.h) of the produced radionuclides were estimated from the eye guides of the excitation functions for the formation of ^{55,57}Co and ^{60,64}Cu at 14.7MeV protons are amounted to 9.0, 0.001, 3225.0 and 680.0 MBq/ μ A.h respectively. Thus sufficient quantities of ^{60,64}Cu can be produced at a small-sized cyclotron.

The calculated statistical parameters for the studied nuclear reactions obtained results provide indication of the quality of the used model codes. The codes give good description of the experimental data in a wide energy region.

Contents

Title	Page				
ACKNOWLEDGEMENT	I				
ABSTRACT	III				
CONTENTS	${f V}$				
LIST OF FIGURES	IX				
LIST OF TABLES	XI				
ABBREVIATION	XII				
SUMMARY	XIII				
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW					
	. f 1				
11	of 1				
Radionuclides	2				
1.1.1. Radionuclides Generators	2				
1.1.2. Production of Radionuclides by	3				
Reactors	_				
1.1.3. Production of Radionuclides by Accelerators	5				
1.2. Types of Accelerators	7				
1.2.1. Linear Accelerator (LINAC)	7				
1.2.2. The Cyclotron	9				
1.3. Literature Review	14				
1.4. Aim of The Work	24				
CHAPTER 2: NUCLEAR REACTION	ONS				
2.1. Reactions Mechanisms	26				
2.1.1. Compound Reactions	28				
2.1.2 Direct Reactions	29				

	2.1.3.	Pre-equilibrium Reactions	31
2.2.	Conse	rvation Laws	32
2.3.	Nuclea	r Reactions Kinematics	32
2.4.	Reacti	on Threshold energies	34
	2.4.1.	Kinematic Threshold (E _{th})	34
	2.4.2.	Coulomb Barrier Threshold (E _c)	35
2.5.	Stoppi	ng of Charged Particle in Matter	35
	2.5.1.	Stopping Power	36
	2.5.2.	The Bethe-Bloch Formula for	37
		Stopping Power	
	2.5.3.	Range of Particles	40
2.6.	Reacti	on Cross Section	41
	2.6.1.	The Activation Method for Cross	44
		Section Measurements	
2.7.	Produ	ction Yield	46
СН	APTER	R 3: APPARATUS AND EXPERIMENTECHNIQUES	NTAL
2 1	Torgot	es and Target Processing	49
	_	s and Target Processing mental Setup	51
J. <u>4</u> .	-	Stack foil Techniques	51
		The MGC-20 Cyclotron	5 1
		2.1. Magnetic System with the	5 7
	3.2.2	Concentric and Harmonic Coils	31
	322	2.2. Vacuum System	58
		2.3. Radio Frequency System and	59
	3.2.2	Generator	
	3 2 2	2.4. Power Supply System and Ion	60
	3.2.2	Source	00
	3.2.2	2.5. Beam Extraction System	60

	3.2.2.6. Diagnostic Tools	61
	3.2.2.7. Beam Transport System	62
	3.2.2.8. Water Cooling System	62
	3.2.2.9. Computer Control System	63
3.3.	Irradiation	63
3.4.	Determination of the Beam Current	64
3.5.	Gamma Ray spectrometry	65
	3.5.1. Semiconductor detectors	67
	3.5.2. Cryostat and Dewar	69
	3.5.3. Gamma-Ray Spectrometry System	71
	Components	
	3.5.3.1. The High Voltage Power Supply	71
	3.5.3.2. The Preamplifier	71
	3.5.3.3. The Amplifier	72
	3.5.3.4. The Multi-Channel Analyzer	73
	(MCA)	
	3.5.4. Energy Resolution	74
	3.5.5. Detector Efficiency	76
~	WARRED A NUCLEAR MORELS AND SO	DE G
C	HAPTER 4: NUCLEAR MODELS AND CO	DES
4.1.	Shell Model	83
4.2.	Optical Model	85
4.3.	Pre-equilibrium Model	86
4.4.	Empire Code	89
	4.4.1. Empire Calculations	91
4.5.	ALICE-IPPE	93
	4.5.1. Pre-Compound Nucleon Emission	94
4.6.	TENDL-2017 Dataset Library	96
4.7.	Deviations and statistical parameters	100

CHAPTER 5: RESULTS AND DISCUSSION

5.1. Monitoring of Proton Beam	104
5.2. Excitation Function	106
5.2.1. Formation of Copper isotopes	107
5.2.1.1. Production of ⁶⁰ Cu	107
5.2.1.2. Production of ⁶¹ Cu	109
5.2.1.3. Production of ⁶⁴ Cu	114
5.2.2. Radioisotopes of Cobalt	115
5.2.2.1. $^{\text{nat}}\text{Ni}(p,x)^{55}\text{Co}$	115
$5.2.2.2.^{\text{nat}}\text{Ni}(p,x)^{57}\text{Co}$	116
5.2.2.3. $^{\text{nat}}\text{Ni}(p,x)^{58}\text{Co}$	118
5.2.3. Formation of ⁵⁷ Ni Radioisotopes	119
5.3. Integral Yields Calculations	120
5.4. Deviations and statistical parameters	122
CONCLUSIONS	127
REFERENCES	129
ARARIC SUMMARV	