

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Holmium Laser Enucleation of the Prostate Versus Bipolar Transurethral Enucleation of the Prostate in Management of Benign Prostatic Hyperplasia

Thesis

Submitted for Partial Fulfillment of Doctorate Degree in Urology

By **Ahmed Maher Gamil Ahmed Higazy**

MBBCh - MSc in Urology, Ain Shams University

Under supervision of **Prof. Dr. Hany Mostafa Abdallah**

Professor of Urology Faculty of Medicine - Ain Shams University

Dr. Ahmed Ibrahim Radwan

Lecturer of Urology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hany Mostafa Abdallah**, Professor and Head of Urology department Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to our lecturers who aided in conducting this study with their continuous supervision and valuable instructions

- Dr. Ahmed Ibrahim Radwan
- Dr. Ahmed Mohamed Tawfeek
- Dr. Ahmed El Shorbagy
- Dr Waleed Mousa

Ahmed Maher Higazy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Study	3
Review of Literature	
Anatomy of the Prostate	4
Physiology of BPH	7
Surgical Management of BPH	
Bipolar Enucleation	14
LASER Technology in BPH	19
Holmium Enucleation of the Prostate (HoLEP)	37
Patients and Methods	
Results	87
Discussion	97
Conclusion	105
Summary	106
References	
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Laser induced thermal changes	33
	Different types of lasers used in BPH	
Table (3):	Laser wavelength and penetration depth	36
Table (4):	Preoperative parameters.	89
Table (5):	Operative efficacy, catheter time and hospital sta	ıy91
Table (6):	Postoperative efficacy.	92
Table (7):	Perioperative complication.	96
Table (8):	Cost analysis.	98
Table (9):	Previous studies	101
Table (10):	Continuation of previous studies	102

List of Figures

Fig. No.	Title F	age No.
Figure (1):	Zones of the prostate	5
Figure (2):	Prostate vasculature	
Figure (3):	Symptoms of BPH	
Figure (4):	IPSS	
Figure (5):	BPH progression	10
Figure (6):	Site of prostatic adenoma	10
Figure (7):	Prostate by TRUS	
Figure (8):	Prostate by PAUS	
Figure (9):	Uroflow	13
Figure (10):	Evaluation of BPH.	13
Figure (11):	Plasma corona around resection and button loc	ps15
Figure (12):	Karl Storz Resection loop.	17
Figure (13):	Karl Storz enucleation loop	18
Figure (14):	Karl Storz Mushroom loop	18
Figure (15):	Bipolar device.	
Figure (16):	Principle of laster.	20
Figure (17):	Components of laser Characteristics of laser li	ght21
Figure (18):	Coherent light waves	21
Figure (19):	Parallel light waves Energy (power) concepts.	22
Figure (20):	LASER stimulated emission	23
Figure (21):	LASER amplification	25
Figure (22):	Q-switch LASER amplification	25
Figure (23):	Fiberoptic laser fiber.	26
Figure (24):	Refractive index of optical fiber.	26
Figure (25):	LASER Fiber	28
Figure (26):	LASER side fire	28
Figure (27):	End fire laser fiber	29

List of Figures cont...

Fig. No.	Title Po	ige No.
Figure (28):	Quartz head (twister fiber)	29
Figure (29):	Laser tissue interaction	
Figure (30):	Light to thermal energy conversion	32
Figure (31):	Absorption coefficient	
Figure (32):	Different laser energies and their depth of penetrat	ion39
Figure (33):	Quanta laser device.	41
Figure (34):	Morcellator device.	41
Figure (35):	Enucleation technique, Herrmann 2006	45
Figure (36):	Enucleation technique, modified technique	46
Figure (37):	HoLEP simulation.	47
Figure (38):	HoLEP technique.	47
Figure (39):	BPEP technique	48
Figure (40):	Evolution of HoLEP techniques	50
Figure (41):	HoLEP procedure of the Xian group	52
Figure (42):	En bloc HoLEP of the Milan group	54
Figure (43):	3 horseshoe incision	56
Figure (44):	Ejaculatory sparring HoLEP	57
Figure (45):	Omega sign following HoLEP	58
Figure (46):	Open retrieval	60
Figure (47):	Endoscopic resection of enucleated adenoma	60
Figure (48):	Algorithm for tissue retrieval	61
Figure (49):	Morcellation technique	62
Figure (50):	Morcellated tissues.	62
Figure (51):	Learning curve illustration.	66
Figure (52):	Surgical training in AEEP.	67
Figure (53):	Urinary outcome measures	77
Figure (54):	MOSES effect	81

List of Figures cont...

Fig. No.	Title	Page No.
Figure (55):	Energy propagation	81
Figure (56):	Consort flow chart	88
Figure (57):	IPSS	93
Figure (58):	Qmax	93
Figure (59):	Qol	94
Figure (60):	Prostate size	94
Figure (61):	PSA	95

List of Abbreviations

Abb.	Full term
B00	Bladder outlet obstruction
	Bipolar enucleation of the prostate
	Bipolar enucleation of the prostate
	Benign prostatic hyperplasia
CZ	
ES	External sphincter
EEP	Endoscopic enucleation of the prostate
HoLAP	Holmium laser ablation of the prostate
HoLEP	Holmium laser enucleation of the prostate
HP-HoLEP	High power HoLEP
LP-HoLEP	Low power HoLEP
LUTS	Lower urinary tract symptoms
ME	Moses Effect
m-HoLEP	MOSES technology in HoLEP
MoLEP	MOSES technology in HoLEP
MT	Moses Technology
PZ	Peripheral zone
QoL	Quality of life
SUI	Stress urinary incontinence
SPSS	Statistical package for social science
TUR	Transurethral resection
TURP	Transurethral resection of the prostate
TZ	Transition zone
UTIs	Urinary tract infections

INTRODUCTION

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms (LUTS) in elderly men that significantly affects the quality of life (QoL). Transurethral resection of the prostate (TURP) represents the standard surgical technique for the management of (BPH) with a prostate size less than 80 ml. However, considerable morbidities are associated with larger sizes. (1)

Endoscopic enucleation of the prostate (EEP) has been recognized as a treatment option for large prostatic adenomas, since first described by Hiraoka et.al, in 1986 ⁽²⁾, it started to gain popularity despite the long learning curve. Many studies have evaluated its safety and efficacy against open prostatectomy in large prostate size. ⁽¹⁾

EEP represents an anatomical surgical technique resembling a surgeon's finger in open prostatectomy where any energy source that provides adequate haemostasis could be used ⁽³⁾. Many studies concluded that EEP relies on the surgeon's skills rather than the energy source itself ^(4,5). Holmium laser enucleation of the prostate (HoLEP) was first described by Gilling in 1998 ⁽⁶⁾ and was proven to be effective with no prostate size limitation with adequate haemostasis ⁽⁷⁾, recently it has been approved as a standard treatment for large prostatic adenoma ⁽¹⁾, bipolar enucleation of the prostate

(BPEP) has been introduced as an alternative energy source with a promising outcome with equal safety and efficacy (3,8,9).

Few studies compared both techniques, one study was done by Shoma et al. showing no statistical difference regarding safety and efficacy between both techniques⁽¹⁰⁾, while Enikeev et al. reported earlier recovery and catheter removal with HoLEP compared to BPEP (8). To our best knowledge, cost-effectiveness had not been estimated before between both techniques.

With such scarce information, we aimed through our study to compare these two energy sources in the enucleation procedure of the prostate in terms of safety, efficacy, and costeffectiveness in the management of large prostatic adenoma.

AIM OF THE STUDY

To compare bipolar and Holmium energy sources in the enucleation technique of the prostate in terms of safety, efficacy, and cost-effectiveness in the management of large prostatic adenoma.