

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

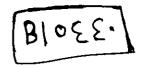
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

STUDIES ON PRODUCTION AND UTILIZATION OF BIODEGRADABLE FILMS AS A FOOD PACKAGING MATERIAL.

BY

SABRIA ABOU-ZEID MOHAMED

M.SC. AGRIC. SCI. (FOOD TECH.), FAC. OF AGRIC., CAIRO UNIV., 1997

THESIS

Submitted in Partial Fulfillment in the Requirements for the degree of

DOCTOR OF PHILOSOPHY OF AGRIC. SCIENCE

In

Food Science and Technology

Food Science and Technology Department Faculty of Agriculture Cairo University

2003

APPROVAL SHEET

STUDIES ON PRODUCTION AND UTILIZATION OF BIODEGRADABLE FILMS AS A FOOD PACKAGING MATERIAL

BY

SABRIA ABOUZEID MOHAMED

Ph.D. Agric. Sci. (Food Tech.), Fac. Of Agric., Cairo Univ., 2003

Approved By:

Date 3\/8 / 2003

Committee in Charge

Cairo University 2003

ACKNOWGEMENT

First of all, ultimate thanks are due to Allah, who without his aid this work could not be done.

I would like to express my profound gratitude and sincerest appreciation to Professor Dr. Salwa B. El- Magoli, Professor of Food Science and Technology and Dean of Faculty of Agriculture, Cairo University, for her kind supervision, valuable guidance, encouragement, helpful suggestion, continuous support and offering every possible help throughout the course of this investigation.

Greatly thanks to Dr. Yahia I. Sallam, assistant Professor of Food Science and Technology, Faculty of Agriculture, Cairo University, for his kind supervision, constructive criticism and advice throughout this work.

Sincere thanks and gratitude are also extended to Professor Dr. Amir A. Ibrahim, Professor of Food Science and Technology, National research center for his kind supervision and valuable suggesting during this work.

بس الدالرحن الرحيم

* فالواسبطاك لا علم لنا الاما علمتنا لك لن العليم الحكيم *

صنق الله العظيم سررة البغرة (١٢٧)

CONTENTS

	1.1.	Edible polymo	T			
	1.2.	Biodegradable	polymers films			
	Safety and health issues					
	2.1.	Edible polyme	T			
	2.2.	Biodegradable	polymers films			
	The edible or biodegradable polymer film's composition					
	3.1.	•	les			
		3.1.1.	Starch-based			
		3.1.2.	Cellulose-based (cellophan)			
		3.1.3.	Alginate			
		3.1.4.	Carrageenen			
		3.1.5	Low- methyle pectin			
		3.1.6	Chitosan			
		3.1.7	Pullulan, Levan and Elsinan			
	3.2.		d			
		3.2.1.	Corn zein.			
		3.2.2.	Collagen			
		3.2.3.	Gelatin.			
		3.2.4.	Wheat protein			
		3.2.5.	Soy protein			
		3.2.6.	Milk protein			
		3.2.7.	Whey protein.			
		3.2.8.	Lipid films			
		3.2.9.	Microbial polyesters			
		3.2.10.	Polylactic acid			
		3.2.11.	Kcralin			
		3.2.12.	Egg albumin proteins			
		3.2.13.	Myofibrillar proteins			
	Structural influences on the films function					
	4.1.	Chemical str	tuctures			
	4.2.	Cohesive energy density				
	4.3.	Glass transition (Tg) effect				
	4.4.	Cross-linka	ge agents effect			
	4.5.	Free volume				
	4.6.	Crystallinity	·			
	4.7.	Orientation.				
	Factors a	Meeting mechan	ical properties of biodegradable films			
	Factors a	effecting permeability of water vapor and oxygen/ light transmission of biodegradable films				
•	Factor affecting microstructure of biodegradable films					
	Factors a	ffecting color p	roperties of biodegradable films			
•	The Mec	hanisms of biol	ogical breakdown of biodegradable films			
			of edible and biodegradable films			

	2.1.		sition temperature measurement Tg		
	2.2.		ble films processing methods		
			solution preparation in aqueous solution (pH:2)		
		2.2.2. Zein s	olution preparation in ethanol 80%		
	2.3.	Fruits and v	egetables perparation		
	2.4.	Packaging materials testing.			
		2.4.1.	Thickness measurement		
		2.4.2.	Determination of oxygen transmission rate (OTR)		
		2.4.3.	Determination of water vapor permeability(WVP)		
		2.4.4.	Determination of tensile strength, elongation at break and young's modulus		
		2.4.5.	Determination of light transmission (T%)		
		2.4.6.	Color		
		2.4.7.	Biodegradation by enzyme		
		2.4.8.	The assessment of biodegradability of plastic films in soil		
		2.4.9.	Moisture and lipid contents.		
		2.4.10.	Surface examination		
		2.4.11.	Microscopic photograph pictures		
	2.5.		mical properties of vegetables and fruits.		
	4.5.	•			
		2.5.1.	Weight loss		
		2.5.2.	Volume		
		2.5.3.	Density		
		2.5.4.	Firmness		
		2.5.5.	The pH measurement		
		2.5.6.	Determination of titratable acidity (TA)		
		2.5.7.	Total soluble solid determination		
		2.5.8.	Statistical analysis		
	VI. RESU	LTS AND DI	SCUSSION		
I:	Production of biodegradable plastic films				
	A)	Physico-che	emical properties of raw corn protein (commercial zein)		
	B)	Physical and Mechanical properties of biodegradable films			
	1.	•	ecting thickness biodegradable films		
		1.1.	Effect of cross-linking, plasticizing agents and processing temperature		
		1.2.	Effect of solvent		
	2.		nsmission Rate (OTR) of biodegradable films		
	-•	2.1.	Effect of different cross-linking agents on OTR.		
		2.2.	Effect of plasticizing agents on OTR.		
		2.3.	Effect of processing temperature on OTR.		
		2.4.	Effect of solvent on OTR.		
	3.		our Permeability (WVP)		
	J.	3.1.	Effect of different cross-linking agents on WVP.		
			• •		
		3.2.	Effect of plasticizing agents on WVP		
		3.3.	Effect of processing temperature on WVP		
		3.4.	Effect of solvent on WVP		
	4.		ngth (TS)		
		4.1.	Effect of different cross-linking agents on tensile strength		
		4.2.	Effect of plasticizing agents on tensile strength		
		4.3.	Effect of processing temperature on tensile strength		

		1
	4.4. Effect of solvent on tensile strength	78
5.	Florgation at break percentage (Toughness) (E%)	30
٥.	5.1. Effect of different cross-linking agents on clongation at break %	30
	5.2. Effect of plasticizing agents on clongation at break %	BO
	5.3. Effect of processing temperature on elongation at break %	BO
	5.4. Effect of solvent on clongation at break %	83 j
6.	Vound's modulus(siffnes)	83
0.	6.1 Effect of different cross-linking agents on young's modulus	85
	6.2 Effect of placticizing agents on young's modulus	82
	6.3. Effect of processing temperature on young's modulus	88
	6.3. Effect of solvent types on young's modulus	88
7.	Light transmission percentage (LT%)	90 J
• •	7.1. Effect of different cross-linking agents on LT%	90
	7.2. Effect of plasticizing agents on LT%	90
	7.3. Effect of processing temperature on LT%	90
	7.4. Effect of solvent on LT%	90 j
8.	Changes in color of biodegradable films.	93
•	8.1. Effect of different cross-linking agents on film's color	93
	8.2. Effect of plasticizing agents on film's color	74
	8.3. Effect of processing temperature on films color	94
	8.4. Effect of solvent on film's color	96
9	Thee enzymatic biodegradation	96
	9.1 Effect of different cross-linking agents on biodegradation %	96
	9.2. Effect of plasticizing agents on biodegradation %	97
	9.3. Effect of processing temperature on biodegradation %	97
10	The biodegradation in soil	100
	10.1. Effect of different cross-linking agents on biodegradation %	100
	10.2. Effect of plasticizing agents on biodegradation %	102
	10.3 Effect of processing temperature on biodegradation %	102
11	The microstructure of biodegradable films	102
	11.1. The cross-linking agents effect	104
	11.2. The plasticizing agents effect.	106
	11.3. The processing temperature effect	100
	11.4. The solvent types effect	107
Part II: Utiliza	70finn	100
C	Physical and Mechanical properties of coated and packaged fruits and vegetables	100
	1. Shelf life	109
	2. Weight loss	112
	4. Firmness	112
	5. Total soluble solids TSS%	117
t t	6. pH and total acidity (TA%)	120
	7. Color	125
1	7. Color	125
	7.1. Tolhatoes color	125
IVI	Conclusion	129
•	JMMARY	130
iva	REFERENCES.	134
ARA	BIC SUMMARY	. 145
1	— — — — — — — — — — — — — — — — — — —	

Name of Cand	lidate: Sabria Abou-raid Mohamad
Tile of Thesis:	Studies on production and utilization of biodegradable 51mg and 6
Supervisors:	Studies on production and utilization of biodegradable films as a food packaging materials. Prof. Dr. Salwa B. Magoli
Department:	Prof. Dr. Salwa B. Magoli
Branch:	Food SCI
_	Annoval•

ABSTRACT

Twenty eight kind of biodegradable plastic films from corn protein (zein) with two different plasticizing agents (25% and50% glycerin and 25% and 50% oleic acid) and three different crosslinking agents as (6% citric acid, 10% oxidized starch and 10% potato starch) at two different processing temperature (60° C and 90° C) and solvents (aqueous solution pH: 2 and ethanol 80% were produced. The physical and mechanical properties of produced films were studied. The most permeable films for oxygen with lower water vapor permeability were chosen and were used as a coating of, mature and pre mature tomatoes and mature oranges. The physical and chemical properties of these coated, packaged and control samples were studied during the cold storage period. The results showed that the films contain starch have higher thickness than those containing citric acid as cross-linking agents. Meanwhile, using ethanol 80% as solvent made the films thickness very thin. The addition of oleic acid had bad effect on oxygen transmission rate and good effect on water vapor permeability of all films, the glycerin addition had the opposite effect. The OTR increased when the plasticizer concentration was increased and also with ethanol (80%). Meanwhile, oxidized starch addition and higher processing temperature decreased the OTR Glycerin, oxidized starch, higher processing temperature and using of ethanol as solvent improved the mechanical properties of all biodegradable films. Starches, higher processing temperature and oleic acid reduced the light transmission % with increasing of the film's darkness. Using of Oxidized starch and citric acid in some films increased the resistance of enzymatic and soil biodegradation Meanwhile, this resistance decreased at high processing temperature and with the increasing of the plasticizer concentration. Glycerin made the films completely degraded after 4 weeks compared to 5 weeks with oleic acid. The microscopic study of films surface showed that films surface containing oxidized starch as cross-linking agents or glycerin as plasticizing agents or ethanol 80% as solvent was homogenous and smooth. Meanwhile, using olcic acid created cracks and pours on the surface. Generally the coating or packaging had no effect on extending orange shelf life. Meanwhile, the coating and packaging extended the shelf life of the green and colored tomatoes one-week over compared to the unpackaged ones. During cold storage weight loss, density, pH and total soluble solids increased and the total acidity and firmness decreased in all fruits, but these changes were low or non significant in coated fruits compared to the other treatments. The coating and packaging of orange increased their lightness and yellowness. Meanwhile, the control orange revealed some brown pieces on their surface. Coating of green tomatoes delayed the development of their color, as they need 3 weeks for completed their color and needs one week when packaged in polypropylene film or without packaging (control). Coating and packaging of red tomatoes reduced their red color with increasing of their lightness. The control samples kept their color.

Salwa Fl. Wadal

INTRODUCTION

I. INTRODUCTION

Packaging protects food from their environment. In multicomponent food, quality and shelf life are also reduced when moisture, aromas, and lipids migrate from food component to packaging materials or inversely. Food packaging, however, has become a central focus of waste reduction efforts. Plastic packaging represents approximately 30 % of municipal solid waste (MSW) and occupies close to two-thirds of trash can volume due to its bulk (Hunt et al., 1990). If the plastic packaging were replaced with alternative materials the weight of synthetic films waste, volume and packaging cost would increase by 400%, 250%, and 200% respectively (Fleming, 1992). Utilization of agricultural wastes in the production of edible and biodegradable films will replace other synthetic material, which cause high pollution to environment.

In general the biodegradable plastic films need 2-3 years for complete decomposition as compared to 300 years for synthetic polymers. The edible polymer films are defined as a thin layer of edible material formed or preformed as a coating for fresh food. Meanwhile the biodegradable films (not edible) are defined as the materials which must be degraded completely by microorganisms (under a warm, moisture environment with acceptable rang of pH, nutrients and oxygen) in a composting process by only natural compounds such as carbon dioxide, water, methane and biomass. The main functions of these biodegradable films are: (1) Improve the mechanical integrity or handling characteristics of the fresh foods. (2) As a carrier for some ingredients as antioxidants, antimicrobials, flavor and colors. 3) Inhibitory effects of moisture, oxygen, carbon dioxide, aroma, and lipid migrations of packaged fresh foods. The biodegradable films are preformed or formed as a coating materials by dipping, spraying, or