

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cairo University Faculty of Veterinary Medicine

Influence of thermal manipulations on quail embryo during embryogenesis and post hatching

Thesis presented by

Saad Nazeh Saad Abd El-Fatah

B.V.Sc., Cairo University, 2017

Thesis submitted to

Cairo University

For the Master's degree in Veterinary Medical Sciences
(Anatomy and Embryology)

Under the supervision of

Prof. Dr. El-Sayed Fath Mohamed Khalifa

Professor of Anatomy & Embryology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Hamdy Mahmoud Rizk

Dr. Karim Mohamed Khalil

Professor of Anatomy & Embryology

Faculty of Veterinary Medicine

Cairo University

Lecturer of Anatomy & Embryology

Faculty of Veterinary Medicine

Cairo University

Supervision Sheet

Prof. Dr. El-Sayed Fath Khalifa

Professor of Anatomy and Embryology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Hamdy Mahmoud Rizk

Professor of Anatomy & Embryology
Faculty of veterinary medicine
Cairo University

Dr. Karim Mohamed Khalil

Lecturer of Anatomy & Embryology
Faculty of veterinary medicine
Cairo University

Cairo University Faculty of Veterinary Medicine Anatomy Department

Name: Saad Nazeh Saad Abd El-Fatah Nationality: Egyptian

Date of Birth: 5 / 1 / 1994 **Place of Birth:** El Behera governorate

Specialization: Anatomy & Embryology Degree: Master

<u>Title of Dissertation:</u> Influence of thermal manipulation on quail embryo during embryogenesis and post Hatching

Under supervision of:

Prof. Dr. El-Sayed F. Khalifa Professor of Anatomy & Embryology, Faculty of Vet. Med., Cairo Univ.

Prof. Dr. Hamdy M. Rizk Professor of Anatomy & Embryology, Faculty of Vet. Med., Cairo Univ.

Dr. Karim M. Khalil Lecturer of Anatomy & Embryology, Faculty of Vet. Med., Cairo Univ.

Abstract

Japanese quail embryo thermal manipulation was known as an effective protocol in improving post-hatch growth performance parameters and thermotolerance acquisition in association with several modifications in molecular, physiological and biochemical parameters. The aim of current study is to elucidate the onset and long-term effects of intermittent thermal manipulations during two-time window, early / late, of embryogenesis in Japanese quail (Coturnix japonica) on embryonic development, hatchability, muscle histogenesis carcass traits, internal organ weights and post hatch growth performance as well as on the expression of Myostatin & Pax7 genes during embryogenesis. The eggs of control group (Ctrl) was incubated at 37.7°C and 55% RH. Three thermally treated groups were incubated intermittently at 41°C and 65% RH intermittently (3 hours / day): Group (EE) during early embryogenesis (ED6 – ED8), group (LE) during late embryogenesis (ED12 – ED14), and group (EL) was thermally treated in both time window (early and late). The hatched chicks were reared under optimal managemental conditions (3 replicates per treatment). The results revealed that TM lead to significant hypertrophy of quail breast muscle in the early embryonic group (EE) without any negative effects on embryonic development, yolk consumption, hatchability, carcass traits and breast meat characteristics. Intermittent short-term (3 – 6h) thermal manipulation (39 - 40°C) protocols during early embryogenesis (ED6 – ED8) could be recommended as a safe and effective protocol to enhance muscle mass growth and breast muscle yield in quail broilers.

Keywords: *Coturnix japonica*; Embryogenesis; Growth performance; Thermal manipulation

Dedication

 $\mathcal{T}o$

My Family

Ų

My wife and my daughter

Acknowledgment

First of all, prayerful thanks to ALLAH, for everything.

Special appreciation is warmly expressed to my dear supervisor

Prof. Dr. El-Sayed F. Khalifa for his supervision, invaluable support, valuable criticism and for his diligent effort, especially to his inspiration, encouragement and forbearance at all time.

My sincere thanks to **Prof. Dr. Hamdy M. Rizk** for his supervision, indispensable support, sincere cooperation, wrathful advices and generous help throughout the work. This research would not have been possible without his patience and support. I am equally thankful to **Dr. Karim M. Khalil** for his supervision, encouragement and generous help throughout the work.

I would like to express my thanks to **Dr. Hamdy M. Zaki**, lecturer of Meat Hygiene and Control, FVMCU for his continuous support, efforts and assistance in performing the practical part of this study to determine the quail meat quality parameters and quail carcass traits. I am thankful to **Dr. Hisham A. Abdelrahman** lecturer of Veterinary Hygiene and Management, FVMCU for his assistance in designing the experiments and performing statistical analyses. My thanks to **Dr. Hassanein H. Abozeid** Lecturer of poultry diseases, FVMCU for his help in performing gene expression analysis. I am thankful to **DVM. Mohamed A. Awad** for his assistance in histological analyses. I am also thankful to **DVM. Mahmoud Gamal** for his assistance in molecular analysis analyses

Finally, it is great pleasure for me to express my thanks and gratitude to all members of Anatomy and Embryology Department for their continuous guidance and support.

CONTENTS

List of Tables	vi
List of Figures	vii
Abbreviations and Symbols	viii
Chapter (1): Introduction	1
Chapter (2): Review of Literature	6
Embryonic Thermal Manipulation (ETM).	6
Effects of ETM on Growth of embryo and final body weight.	10
Effects of ETM on Muscle growth and breast muscle yield.	13
Effects of ETM on Thermo tolerance acquisition and biochemical profile.	18
Effects of ETM on Offspring Sex ratio and sex differentiation.	19
Effects of ETM on immune status and immune- related enzymes.	20
Chapter (3): Published Papers	
3.1: Thermal Manipulation on Japanese Quail Embryo; An Embryological Study.	22
3.2: Embryonic Thermal Manipulation of Japanese Quail: Effects on Embryonic Development, Hatchability and Post Hatch Performance.	35
3.3: Embryonic Thermal Manipulation of Japanese Quail: Molecular Bases of Thermally Induced Muscle Hypertrophy, Internal Organ Weights and Carcass Traits.	65
Chapter (4): Discussion	81
Chapter (5): Conclusion and Recommendations	84
Chapter (6): Summary	86
Chapter (7): References	89

LIST OF TABLES

No.	Title	Page
110.		No.
1	- Quail egg number and average weights.	26
2	- Influences of thermal treatment on relative embryo weight in Japanese quail embryo.	27
3	- Influences of thermal treatment on relative (yolk sac) weight in Japanese quail embryo.	28
4	- Influences of thermal treatment on hatchability.	28
1	- Average egg weights.	42
2	- Effects of thermal manipulation on hatchability (%) and hatching weight (g).	47
3	- Effects of thermal manipulation on final body weight at 5 weeks and feed conversion ratio (FCR).	51
1	- Primers used in qRT-PCR analyses.	70
2	- The effect of ETM during 2-time terminals (ED 10, ED 15) on relative mRNA levels of MSTN and PAX7 in the Muscle of quail embryos subjected to different TM protocols at ED $6-8$ and ED $12-14$.	73
3	- Influence of thermal manipulation on internal organ weights.	74
4	- Influence of thermal manipulation on meat quality parameters.	75

LIST OF FIGURES

No.	Title	Page No.
1	- Congenital anomalies in Japanese quail embryos.	27
1	- Curves of relative embryo weight and relative yolk sac weight.	45
2	- Representative images of the cross-sectional area of the Supracoracoideus and Pectoralis muscle and their quantification.	53

Abbreviations and Symbols

-bHLH basic helix loop helix

-bp Base pair

-cDNA Complementary DNA

-CTRL Control group

-DIO2/-DIO3 type 2 iodothyronine deiodinase-Thyroxine 5-deiodinase 3

- GAPDH Glyceraldehyde 3-phosphate dehydrogenase

-ED Embryonic day

-EE / LE / EL Early embryonic / late embryonic / early-late embryonic

-MSTNR/F Myostatin reverse / forward primer
-ETM Embryonic thermal manipulation

-FVMCU Faculty of veterinary medicine, Cairo University

-GAPDHR/R Glyceraldehyde 3-phosphate dehydrogenase reverse/forward

-GH Growth hormone

-H&E Hematoxylin and eosin stain

-IACUC institutional animal care and use committee

-Pax7 Paired pox protein 7

-MRF 4 Myogenic regulatory factor 4

-MSTN Myostatin

-Myf5 myogenic factor-5

-MyoD myoblast determination protein

-NBF neutral buffered formalin

-PaxR/F Paired pox protein reverse /forward primer

-IGF1 Insulin growth factor 1

-PCNA proliferating cell nuclear antigen
-LPS / IL-6 Lipopolysaccharide / interleukin -6

-qRT-PCR Quantitative real time Polymerase chain reaction

-RH Relative humidity

-T3 and T4 Triiodothryronine and Tetraiodothryronine

-TGF-β transforming growth factor-beta

Chapter (1):

Introduction

INTRODUCTION

Several species of quail are present worldwide, the Japanese quail (Coturnix japonica) is the smallest avian species reared for egg and meat production also it has a global importance as a laboratory animal (Huss, Poynter, & Lansford, 2008). Japanese quail is characterized by short generation interval and can produce 3 to 4 generations per year, so it is an important laboratory and economic animal model in biological and embryological researches (Minvielle, 2004). For many decades, the applied incubation temperatures were kept relatively constant throughout the incubation period in order to avoid possible deleterious effects of temperature changes on embryogenesis, hatchability and chick quality (Krausova & Peterka, 2007). In the fact, the natural incubation temperature fluctuates widely (Webb, 1987). So many studies have proved that carefully manipulation of incubation temperature during critical period within embryogenesis may induce alterations in the bird's metabolism and performance (*Piestun et al.*, 2011). Therefore, when conducting thermal manipulation during incubation, consideration of three major aspects should be put in mind: timing, temperature degree, and length of exposure (duration). Subsequently the period in which to apply thermal manipulation during embryogenesis should be selected to match the specific physiological system to be affected and also should be connected with the development of hypothalamic-hypophyseal-thyroid axis and hypothalamic-hypophyseal-adrenal axis (*Piestun, Harel, Barak, Yahav*, & *Halevy, 2009; Piestun, Yahav, & Halevy, 2015; Yahav, Collin, Shinder, & Picard, 2004*).

Embryo thermal manipulations during incubation do not restricted to high temperatures only (Yalcin & Siegel, 2003) but also include exposure to low temperatures during a certain time window of embryogenesis (Yahav, Collin, et al., 2004). Several studies in chickens and turkey illustrated that embryos are highly sensitive to elevated incubation temperature in early stages than late stages of incubation (Ande & Wilson, 1981; Moreng & Shaffner, 1951; Romanoff, Smith, & Sullivan, 1938), and the greater tolerance of embryos to high incubation temperature in late stages of incubation depends on embryo adaptation to high metabolic energy produced in the second half of incubation (*French*, 1997). Broilers spend up to 35% of its total life inside the egg and any factor affecting positively or negatively the growth and development during embryogenesis can have a significant long-lasting effect on post hatch performance (Hulet, Gladys, Hill, Meijerhof, & El-Shiekh, 2007). Hamburger and Hamilton (1992) showed that the entire process of chick embryogenesis can be segmented into 3 major stages: 2 early stages during which organogenesis occur and the last phase, starting at ED13, during which growth and maturation occur. Embryonic TM is a very effective protocol that improves thermotolerance acquisition that alleviates heat stress