

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

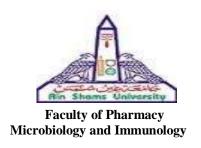
التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار



بالرسالة صفحات لم ترد بالأصل

Production and characterization of some antifungal metabolites produced by *Alcaligenes* and *Lysinibacilli* isolates

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Sayed Emad El-Din El-Sayed

Bachelor of Pharmaceutical sciences, 2014
Teaching assistant, Microbiology and Immunology Department
Faculty of Pharmacy, Ahram Canadian University

<u>Under the supervision of</u>

Prof. Dr. Khaled Mohamed Anwar Aboshanab

Acting dean and Vice dean of postgraduate studies and research,
Professor of Microbiology and Immunology
Faculty of pharmacy, Ain Shams University

Ass. Prof. Neveen Ahmed Abd-El Aziz

Associate professor of Microbiology and Immunology Faculty of pharmacy, Ahram Canadian University

Dr. Ghadir Saied El-Housseiny

Lecturer of Microbiology and Immunology Faculty of pharmacy, Ain Shams University

Production and characterization of some antifungal metabolites produced by *Alcaligenes* and *Lysinibacilli* isolates

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Sayed Emad El-Din El-Sayed

Bachelor of Pharmaceutical sciences, 2014
Teaching assistant, Microbiology and Immunology
Department
Faculty of Pharmacy, Ahram Canadian University

ACKNOWLEDGEMENTS

Foremost, I would like to thank and express my sincere gratitude to my distinguished supervisors for their continuous support on my master's study and research. It was a great privilege and honor to work and study under their guidance.

First, I would like to thank **Prof. Dr. Khaled Mohamed Anwar Aboshanab**, Acting Dean, Vice Dean of Postgraduate Studies and Research and Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for the distinguished selection of the research point ,scientific supervision, his sincere support, valuable advice and continuous guidance throughout the work.

I am deeply grateful to **Ass. Prof. Neveen Ahmed Abd-El Aziz**, Associate Professor of Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University for scientific supervision, thorough revision of this thesis, her patience, motivation, enthusiasm, efforts, and immense knowledge. Her follow up and guidance helped me during the research, practical work and writing of this thesis.

I am greatly grateful to **Dr. Ghadir Saied El-Housseiny**, Lecturer of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University for scientific supervision, thorough revision of this thesis, her constant efforts, encouragement, knowledge and follow up throughout the practical work and writing of this thesis. Her dynamism, vision and motivation have deeply helped me all through my research.

Special thanks to **Dr. Ahmed Essam Elissawy**, Lecturer of Pharmacognosy, Drug Discovery and Development Research Center at Faculty of Pharmacy, Ain Shams University for his help in the interpretation of the spectroscopic analyses of the antifungal metabolite.

Great thanks for **Mina Michael**, former assistant lecturer in Pharmacognosy department, Faculty of Pharmacy, Ahram Canadian University for his help in the extraction and chromatographic separation of the antifungal metabolite.

Great thanks to Usamma Ammar, Nada Mosallam and Karem Ahmed, former staff in Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, for their help in the interpretation of the spectroscopic analyses of the antifungal metabolite.

Last but not least, I would like to thank my family for their endless love, support and care throughout my entire life.

Above all, praise be to God, Lord of the Worlds, who helped me, blessed me, honored me, and led me to where I am.

Sayed Emad El-Din

TABLE OF CONTENTS

TABI	LE OF CONTENTS	i
LIST	OF ABBREVIATIONS	viii
LIST	OF FIGURES	xi
LIST	OF TABLES	XV
	ΓRACT	
	RODUCTION	
	ERATURE REVIEW	
	ungal infections overview	
1.1	Classification of Mycoses	5
1.1	Classification Based on Site	5
1.1	.2 Classification Based on Route of Acquisition	5
1.1	1.3 Classification Based on Virulence	6
	1.1.3.1 Primary (true) fungal pathogens	6
	1.1.3.2 Opportunistic pathogens	7
	1.1.3.2.1 Candidiasis	7
	1.1.3.2.2 Aspergillosis	10
	1.1.3.2.3 Zygomycosis	11
	1.1.3.2.4 Cryptococcosis	11
	1.1.3.2.5 Phaeohyphomycosis	11
	1.1.3.2.6 Hyalohyphomycosis	11
1.2	Fungal growth and reproduction	12
1.3	Incidence and epidemiology	15
2. A	ntifungal agents	18
2.1	Griseofulvin	18
2.2	Elyayitasina	10
2.2	Flucytosine	18
2.3	Polyene antifungal agents	19
2.4	Antifungal azoles	20

2.5	New triazoles	21
2.6	Other sterol synthesis inhibitors: allylamines and	
morphol	ines	21
2.7	Echinocandins	22
2.8	Sordarins	
3. Challe	nges facing currently available antifungal agents	24
3.1	Safety profile	24
3.2	Resistance	25
4. Strate	gies for development of new antifungal agents	27
4.1	Screening of large libraries of synthetic small molecules	27
4.2	Inspection of bioactive natural products	28
4.2.1	Soil as a source of organisms producing bioactive secondary metabolites	29
4.2.1.	1 Actinomycetes	30
4.2	1.1.1 Actinomadura	30
4.2	1.1.2 Actinoplanes	30
4.2	1.1.3 Arthrobacter	30
4.2	1.1.4 Micromonospora	31
4.2	1.1.5 Streptomyces	31
4.2.1.	2 Nocardia	31
4.2.1.	3 Aureobacterium	32
4.2.1.	4 Brevibacterium	32
4.2.1.	5 Lactobacillus	32
4.2.1.	6 Lysinibacillus	32
4.2.1.	7 Pseudomonas	34
4.2.1.	8 Escherichia	34
4.2.1.	9 Alcaligenes	34
4.2.2	Advantages of antifungals of microbial origins	35
4.2.3	2, 4-Di-tert-butylphenol and its analogs as naturally produced antifungal	25
	Threight in the medicine of secondary metabolites for the medicine	35
4.2.4 organisn	Physiological functions of secondary metabolites for the producing as	37

5. Signi	ficance of bacterial antifungal activity	38
5.1	Development of plant protection agents	38
5.2	Fungal growth inhibition within the human body	39
5.2.1	The Mouth	39
5.2.2	The Digestive Tract	39
5.2.3	The Lung	40
6. Meth	ods for detection of fungal growth inhibition	40
6.1	Cross-Streak Assay	40
6.2	Agar Block Assay	40
6.3	Dual Culture Plate Assays	41
6.4	Dual Culture Broth Assay	41
6.5	Agar Overlay Assay	41
6.6	Well-Plate Assay	42
6.7	Paper Disc Assay	42
6.8	Agar Disc-Broth Method	42
7. Extra	action, purification, and characterization of bioactive	
secondar	y metabolites	42
7.1	Extraction	42
7.2	Purification	43
7.3	Characterization and identification of bioactive seconda	ry
metabo	lites	44
8. Effor	ts in product improvement of bioactive secondary	
metaboli	tes	45
8.1	Factors affecting secondary metabolites production by	
ferment	tation	45
8.1.1	Carbon and nitrogen sources	45
8.1.2	Environmental factors	46

8.2	Optimizing the fermentation process	47
MATEI	RIALS AND METHODS	49
1. Bact	terial isolates	49
2. Dru	gs and Chemicals	49
3. Med	lia	52
3.1	Readymade media	52
3.2	Minimal medium for antifungal metabolite production	
(prepa	red medium)	52
3.3	Glycerol stock medium	53
4. Reas	gents, buffers and solutions	53
4.1	Citrate buffer	53
4.2	Acetate buffer	53
4.3	Potassium phosphate buffer	53
4.4	Cell lysis buffer reagent	54
4.5	Primers used for 16S ribosomal RNA amplification by P	CR
and se	quencing	54
5. Coll	ection of soil samples	54
6. Reco	overy and maintenance of isolates	54
7. Scre	ening for antifungal activity	55
7.1	Preliminary screening by agar cross streak and dual cultu	re
metho	ds	55
7.2	Secondary screening by agar well diffusion method	55
8. Iden	tification of the selected isolates (S6 and F2)	56
8.1	Gram stain	56
8.2	Biochemical tests	56
8.3	DNA sequencing of 16S rRNA	56

8.4	Sequence and phylogenetic analyses	56
9. Bacte	erial culture for antifungal production in shake flasks	57
9.1	Determination of bacterial count	57
9.2	Seed culture preparation and production conditions	58
9 .3	Time course of antifungal production in basal medium	59
	ng for the intracellular and extracellular activities of the	
10.1	Testing for the extracellular activity	
10.2	Testing for the intracellular activity	59
11. Purif	ication of the antifungal metabolites	60
11.1	Extraction of the antifungal metabolite	60
11.2	Thin layer chromatography (TLC) analysis	60
11.3	Purification of the bioactive metabolite(s) through activity	y
guided	fractionation	61
11.4	Correlation between the metabolite(s) concentration and	
inhibitio	on zone diameter using agar well diffusion	61
12. Char	acterization of the antifungal metabolite(s)	62
12.1	Effect of heat, pH, detergents and enzymes on stability ar	ıd
activity	of the antifungal compound	62
12.2	Investigation for fungicidal and / or fungistatic mode of	
action		62
12.3	Chemical characterization and spectral analysis of the	
purified	l antifungal compound(s)	63
12.4	Evaluation of the antifungal activity of the metabolite(s).	63
J	ying the factors affecting antifungal production by cillus isolate S6 and Alcaligenes isolate F2	64

13.1 Effect of different media components	64
Optimization of antifungal metabolite(s) production using	g
RSM	64
13.3 Confirmation of the RSM optimization results and estima	tion
of the antifungal concentration	65
14. Statistical analysis	65
RESULTS	68
1. Recovery of the bacterial isolates and screening for the production of antifungal metabolite(s)	68
2. Identification of the isolates S6 and F2	
3. Time course of antifungal production in basal medium	
4. Testing for the intracellular and extracellular activity	
5. Extraction of the antifungal metabolite from the seed culture	75
6. Purification of the bioactive metabolite(s) by silica gel column chromatography	
7. Correlation between the metabolite(s) concentration and inhibition zone diameters using agar well diffusion	
8. Characterization of the antifungal metabolite (s)	
8.1 Thermal, enzymes, detergents and pH stability of the	
antifungal metabolite(s)	80
8.2 Investigation for fungicidal and / or fungistatic mode of	
action	82
8.3 Chemical characteristics and spectral analyses of the puri antifungal compounds	
9. Evaluation of the antifungal activity of the <i>Lysinibacillus</i> isola MK212927 metabolite compared to the commercially available antifungal agents	ate

10. Factors affecting antifungal metabolite production by Lysinibacillus sp.MK212927 (S6) and Alcaligenes faecalis MT332429 (F2)91		
10.1		
10.2	Response surface methodology (RSM) for the optimi	zation of
enviror	nmental and nutritional conditions affecting the antifung	al
metabo	olite production	93
10.3	Confirmatory experiment using optimal conditions as	nd
estimat	tion of metabolite concentration	101
DISCUS	SSION	104
SUMMA	ARY	114
REFERI	ENCES	116