

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Remineralizing potential of Grape seed extract on demineralized Enamel and Cementum of Human premolar samples (Scanning electron microscope and polarized light microscopic study)

Thesis Submitted to
Faculty of Dentistry – Ain Shams University
In Partial Fulfillment of the requirements for
Doctor Degree in Oral Biology

By

Abeer Abd El Maksoud Abd El Maksoud Mohamed

B.D.S, 2006
Faculty of Oral and Dental Medicine-Cairo University
M.Sc, 2016
Faculty of Dental Medicine for Girls Al-Azhar University

Supervisors

Prof. Dr. Medhat Ahmed El-Zainy

Professor of Oral Biology and Former Vice Dean of Society and Environmental Affairs Faculty of Dentistry – Ain Shams University

Dr. Dahlia Ghazy Mohamed Rateb

Assistant Professor of Oral Biology Faculty of Dentistry – Ain Shams University

> Faculty of Dentistry Ain Shams University 2021

الإلما سبحانك لا علم لنا إلا ما علمتنا

إنك أنت العليم الحكيم"

حدق الله العظيم

سورة البقرة آية "32"

<u>Acknowledgment</u>

First of all, I would like to thank ALLAH for helping me through this work.

I cannot fully express my deepest appreciation and gratitude to **Prof. Dr. Medhat Ahmed El-Zainy** Professor of Oral Biology and Former Vice Dean of Society and Environmental Affairs, Faculty of Dentistry, Ain-Shams University, for his invaluable support, endless help, kind supervision and guidance throughout the entire course of this work. It is an honour for any candidate to work under his supervision.

Deepest appreciation and thanks are dedicated to **Dr. Dahlia Ghazy Mohamed Rateb** Assistant Professor of Oral Biology, Faculty of Dentistry, Ain-Shams University, for her time, effort, support, valuable advice, her encouragement and facilities that helped me to carry out this work. It is a pleasure for me to work under her supervision.

The acknowledgment will remain incomplete if I do not thank all and everyone, especially my family and my friends, who have extended a hand, facilitated my work, or have given support to me to get through my research.

I dedicate this work to my beloved parents, my children and my brothers those are dearest to my heart

Abstract

Aim:

The aim of this study was to investigate the remineralizing potential of grape seed extract on demineralized enamel and cementum of human premolars and to compare with that of NaF using scanning electron microscope (SEM) attached with energy-dispersive x-ray analysis (EDXA) and Polarized light microscope (PLM).

Materials and Methods:

Forty recently extracted maxillary first premolars were randomly divided into four groups, (n= 10) according to the following procedure: negative GI (no treatment), positive GI (immersed in demineralizing solution), GII (treated with grape seed extract) and GIII (treated with sodium fluoride). The demineralized specimens were subjected to pH cycling twice daily for two weeks. Then analyzed by scanning electron microscope with EDX and finally polarized light microscopy.

Results:

For enamel the SEM of groups GII & GIII revealed apparent decrease in the irregularities of demineralized enamel with presence of globular precipitates causing occlusion of enamel rod ends. EDXA revealed a significant difference between groups, when Ca & P were compared showing a greater potential of remineralization for GSE than NaF. Statistical analysis of PLM showed significant decrease in lesion depth in GII compared with GIII. For cementum the SEM analysis showed regular narrow cracks in some areas with decreaing signs of resorption on the mineralized cementum in both groups II, III. Polarized light microscopic analysis showed mineral precipitation band on the surface of treated cementum lesions without area of demineralization. Wide birefringent zone known as remineralizing zone (RZ) was also observed in GII. While in GIII, thin birefringent zone was also observed.

Conclusion:

In this in vitro study, it was found that grape seed extract caused a better improvement in the surface topography of the enamel and cementum better than sodium fluoride solution.

Contents

Title	Page
List of abbreviations	I
List of Figures	IV
List of Tables	XI
Introduction	1
Review of literature	3
Enamel	3
Cementum	6
Enamel demineralization (white spot lesions)	9
Cementum demineralization	13
Remineralization	14
Role of Saliva in remineralization	16
Remineralization with fluoride therapy	19
Mode of action of fluoride	22
Hazards of fluoride use	24
Others non-fluoride remineralizing agents	26
Grape seed extract	28

Remineralization potential of Grape seed	
extract	30
Remineralization potential of GSE on	
Enamel	30
Remineralization potential GSE on	
Cementum	32
Aim of the study	36
Material and Methods	37
Results	49
Discussion	94
Summary	113
Conclusion	119
Recommendation	120
References	121
Arabic summary	

List of Abbreviations

Abbreviation	Meaning
ANOVA	ANalysis Of Variance
Ca	Calcium
CaCl2	Calcium Chloride
CaF2	Calcium Fluoride
EDJ	Enamel -Dentin Junction
EDXA	Energy Dispersive X-ray microAnalyzer
EREs	Enamel Rod Ends
ERSH	Epithelial Root Sheath of Hertwig
ESEM	Environmental Scanning Electron
	Microscope
F	Fluoride
FDA	Food and Drug Administration
GSE	Grape Seed Extract
HAP	Hydroxyapatite
KCL	Potassium Chloride
KH2PO4	Potassium Dihydrogen Phosphate
KV	KiloVoltage

LFD	Live Fiber Detection
Mm	Millimeters
NaF	Sodium Fluoride
Na2Po3F	Sodium monoflurophosphate
NR	Naringin
ОН	Hydoxyl group
OPC	Oligomeric ProanthoCyanidins
Р	Phosphorous
PA	Proanthocyanidins
PDL	Periodontal ligament
PH	Measure of acidity & alkalinity
PLM	Polarized Light Microscope
QC	Querecetin
RZ	Remineralizing Zone
SD	Standard Deviation
S. Mutans	Streptococcus mutans
SnF2	Stannous Fluoride
SPSS	Statistical Package for Social Science
ТСР	Tricalcium Phosphate

wt%	Weight percent
X	Magnification power