

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electrical Power and Machines Department

Enhancing the Maximum Power Point Tracking Technique for Photovoltaic System

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electrical Power and Machines Department)

By

Ahmed Abd El Baset Abd El Halim Hussein

Bachelor of Science in Electrical Engineering

(Electrical Power and Machines Department)

Supervised By

Prof. Ahmed Abd El Sattar Abd El Fattah

Prof. Naggar Hassan Saad

Cairo - (2020)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electrical Power and Machines Department

Thesis Title: Enhancing the Maximum Power Point Tracking Technique for Photovoltaic System

Submitted By: Ahmed Abd El Baset Abd El Halim

Degree: Master of Science in Electrical Power and Machines

Examiners' Committee

Name and Affiliation

Signature

Prof. Dr. / Said Abd El Monem Mohamed Wahsh

Prof. of Power Electronics - Electronics Research Institute

Prof. Dr. Hany Mohamed Hasanien Mohamed

Faculty of Engineering, Ain Shams University

Prof. Dr. / Ahmed Abd El Sattar Abd El Fattah

Faculty of Engineering, Ain Shams University

Prof. Dr. / Nagger Hassan Saad

Faculty of Engineering, Ain Shams University

Date: / /

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electrical Power and Machines

Department

Thesis Title: Enhancing the Maximum Power Point Tracking Technique for Photovoltaic System

Submitted By: Ahmed Abd El Baset Abd El Halim

Degree: Master of Science in Electrical Power and Machines

Supervisory Committee

Name and Affiliation

Signature

Prof. Dr. / Ahmed Abd El Sattar Abd El Fattah

Faculty of Engineering, Ain Shams University

Prof. Dr. / Naggar Hassan Saad

Faculty of Engineering, Ain Shams University

Date: / /

Statement

This thesis is submitted as a partial fulfillment of *Master of Science in Electrical Power and Machines* Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Ahmed Abd El Baset Abd El Halim

Signature

Date: / /

Researcher Data

Name: Ahmed Abd El Baset Abd El Halim

Date of birth: 04 / 08 /1993

Place of birth: Cairo/ Egypt

Last academic degree: Bachelor Science

Field of specialization: Electrical Power

University issued the degree: Higher Institute of Engineering and Technology

Fifth Settlement

Date of issued degree: 07 / 2016

Current job: Teacher Assistant at Egyptian Chinese

University

ABSTRACT

In recent years, renewable energy sources have attracted a great deal of attention as a key solution to fossil fuel depletion. Photovoltaic (PV), which is the direct conversion of light into electricity, has emerged as one of the promising paths to achieve a transition to sustainable energy across the world. However, under different operating conditions, the voltage and maximum power produced from the PV array can vary.

Typical PV system consists of PV modules, DC-DC Converter and an MPPT. MPPT controls the DC-DC converter that acts as a coupling stage between PV module and load. A DC-DC converter is a device that transfers a DC supply's voltage from a level to another. Researchers face many challenges in designing converters with maximum efficiency, small size, reduced cost, and minimize switching losses. For the PV system applications, a conservative step-up (boost converter) can be used. This converter has a simple structure. The step-up (boost) converter is pulse controlled, when the duty cycle is near to hundred percent, the gain approaches infinity. But, practically, the static gain is restricted because of losses associated with the inductor, switch, diode, and capacitor.

This thesis aims to use a PV model for the simulation of photovoltaic arrays and thus to propose a method for tracking the maximum power point using alternative control methods for DC-DC converters. Besides, the thesis will focus on a comparison between the proposed method and Perturb and Observe (P&O) and Incremental Conductance (IC) methods that are used for maximum power point tracking. The proposed system consists of a PV model, a DC-DC converter, a VSC, a transformer, and a grid to simulate a real-life situation.

Furthermore, the P&O and IC as well as P&O and Cuckoo Search Algorithm (CSA) in combination will be investigated to reveal their effects on the general efficiency of the PV system. A Matlab/Simulink is utilized to show the impact of these methods on the PV system in various cases. According to the simulation results, using a combination of the above-mentioned maximum power point tracking methods (ICM-P&O/CSA-P&O), it provides a faster response under rapid changes in operating conditions than using conventional P&O and IC methods alone.

At the end of the thesis a practical experiment is presented which was conducted to verify one of the methods discussed in it.

Keywords

Maximum Power Point Tracking, Perturb and Observe, Conventional Incremental Conductance Method, Cuckoo search algorithm

Acknowledgements

Thanks to Allah for helping me accomplish this work.

Then I want to thank my supervisors, Prof. Dr. / Ahmed Abd El Sattar and Prof. Dr. / Naggar Hassan Saad for their ongoing guidance during their master's degree. Their important suggestions and conversations have always been useful and inspiring. Plus, their help and support was my biggest inspiration for improving what I do.

I might want to offer my true thanks and regard for my family, particularly my parents, whom I owe with all achievement in my life. There are no words that can offer my thanks to them, yet I petition Allah to bless them and prize them.

One last word for my wife; without you I could never accomplish this work. Your patience and encouragement has always been a source of strength to me. You are the brilliant moon that lightens my life.

Table of Contents

Abstract	i
Acknowledgements	ii
Table of Contents	iii
List of Figures	V
List of Tables	vii
List of Symbols	Vii
List of Abbreviations	X
Chapter 1 Introduction	1
1.1 Overview	1
1.2 Photovoltaic systems	1
1.2.1 Modeling the solar array	2
1.2.2 MPPT under partially shadowing conditions	3
1.3 Thesis Objectives	4
1.4 Organization of this thesis	4
1.5 Future work	5
Chapter 2 PV and System Modeling	6
2.1 Introduction	6
2.2 PV Modeling	6
2.2.1 The analytical method	6
2.2.1.1 The single diode model (SDM)	6
2.2.2 I-V characteristics of PV	8
2.3 Boost DC-DC Converter Modeling	9
2.3.1 Operation of the Boost Converter	10
2.4 Voltage-source converter Modeling	13
2.4.1 Modeling of the grid-connected	13
Chapter 3 Optimal techniques for PV Maximum Power Point Tracking	16
3.1 Introduction	16
3.2 Perturb and observe (P&O) or hill climbing	17
3.3 Incremental conductance method (ICM)	18
3.4 Genetic algorithms (GA)	19
3.5 Artificial neural network (ANN)	21
3.6 Cuckoo Search Algorithm (CSA)	22
3.6.1 Cuckoos' behavior	22
3.6.2 Le'vy flight	22
3.6.3 Cuckoo Search algorithm	23
3.7 Hybrid MPPTs	24

3.8 Purposed MPPT Methodologies		
3.8.1 ICM-P&O - based MPPT	25	
3.8.2 CSA-P&O- based MPPT method	26	
Chapter 4 Simulation Results	29	
4.1 Introduction	29	
4.2 System under study		
4.3 Simulation results for 100 KVA PV system	29	
4.3.1 P&O-based MPPT	29	
4.3.2 ICM-based MPPT	30	
4.3.3 ICM-P&O - based MPPT	30	
4.4 Simulation results for 600 KVA PV system at different temperature and		
irradiance	34	
4.4.1 Results of P&O-based MPPT method	34	
4.4.2 Results of CSA-based MPPT method	34	
4.4.3 Results of CSA-P&O- based MPPT method	35	
Chapter 5 PV System Experimentation		
5.1 Introduction	40	
5.2 Components of the system		
5.2.1 I-V characteristics of PV	41	
5.2.2 Battery	43	
5.2.3 Battery charger	43	
5.2.3.1 Buck converter	43	
5.2.3.2 MPPT controller	44	
5.2.4 AC Inverter	44	
5.3 Results of the Experiment	44	
Chapter 6 Conclusions	46	
References	48	
Appendix		
List of Publications		

List of Figures

Fig. 1.1	An on-grid PV system connected to MPPT in the AC inverter	2
Fig. 1.2	A group of two series PV modules, M_1 under partial shadowing	
	conditions and M_2 under normal radiation	4
Fig. 1.3	P - V curve for the two connected groups	4
Fig. 2.1	Connection of the whole PV system	6
Fig. 2.2	Equivalent circuit of the solar cell using <i>SDM</i>	7
Fig. 2.3	I - V and $P - V$ curves of one module at 25 °C	8
Fig. 2.4	Non-ideal Boost converter	10
Fig. 2.5	Boost converter ON state	11
Fig. 2.6	Boost converter OFF state	12
Fig. 2.7	Grid-connected VSC inverter	14
Fig. 3.1	The $P - V$ curve illustrates the perturbation direction of voltage	17
Fig. 3.2	Flowchart of P&O MPPT	17
Fig. 3.3	The flowchart of the ICM MPPT	19
Fig. 3.4	Flow Chart of GA	20
Fig. 3.5	ANN-based MPPT flowchart	21
Fig. 3.6	Le'vy flight in a two-dimensional plane	23
Fig. 3.7	P-V curve used in CSA, according to the used model	23
Fig. 3.8	Flowchart of a CSA-based MPPT method	24
Fig. 3.9	Flowchart of the ICM-based P&O algorithm	27
Fig. 3.10	Flowchart of the CSA-P&O- based MPPT method	28
Fig. 4.1	Block diagram for the studied system	29
Fig. 4.2	Output power, voltage, and duty cycle under sudden step changes in	
	irradiance using P&O-based MPPT	30
Fig. 4.3	Output power to the grid using P&O-based MPPT	31
Fig. 4.4	Output power, voltage, and duty cycle under sudden step changes in	
	irradiance using ICM-based MPPT	31
Fig. 4.5	Output power to the grid using ICM-based MPPT	32
Fig. 4.6	Output power, voltage, and duty cycle under sudden step changes in	
	irradiance using ICM-P&O- based MPPT	32
Fig. 4.7	Output power to the grid using ICM-P&O- based MPPT	33
Fig. 4.8	Output PV power and grid power under varying irradiance at 25 °C for	
	the P&O method	36
Fig. 4.9	Output PV power and grid power under varying irradiance at 50 °C for	
	the P&O method	36

Fig. 4.10	Output PV power and grid power under varying irradiance at 25 °C for	
	the CSA method	37
Fig. 4.11	Output PV power and grid power under varying irradiance at 50 °C for	
	the CSA method	37
Fig. 4.12	Output PV power and grid power under varying irradiance at 25 °C for	
	the proposed method	38
Fig. 4.13	Output PV power and grid power under changing irradiance at 50 °C	
	for the proposed CSA-P&O method	38
Fig. 5.1	Components of the system	40
Fig. 5.2	VS-100P module	40
Fig. 5.3	The connection circuit of buck converter with MPPT and battery	41
Fig. 5.4	I - V and $P - V$ curves of one module at 25 °C	42
Fig. 5.5	Measured $I - V$ and $P - V$ curves of the VS-100P Module	42
Fig. 5.6	The circuit of the Buck converter	43
Fig. 5.7	Waveforms of currents i_1 and i_2	43
Fig. 5.8	MPPT Board	44
Fig. 5.9	The buildup of the PV voltage until it reaches the steady-state	44
Fig. 5.10	The buildup of the PV voltage until it reaches the steady-state	45
Fig. 5.11	The output waveform of the Buck converter (Chargeable voltage)	45

List of Tables

Table 2.1	Electrical performance of Sun Power SPR-305 Module	8
Table 4.1	Comparison of the three methods under varying irradiance	33
Table 4.2	Output PV power and maximum overshoot in power under	
	varying irradiance and temperatures	39
Table 5.1	Electrical performance of the VS-100P Module	41
Table 5.2	Characteristics of the Ultracell battery	43

List of Symbols

A Ampere E_{a} Band Gap Energy Boltzmann's Constant K_R TCell Temperature P_d Conduction loss of the diode Conduction loss of the switch P_{SW} i, I Current Current at MPP I_{mp} $^{\circ}C$ Degree Celsius Diode Current i_d **Diode Saturation Current** I_{sat} Diode Voltage v_d Diode voltage drop V_d D**Duty Cycle** Efficiency η Equivalent Resistors Parallel Resistor R_{sh} Equivalent Resistors Series Resistor $R_{\mathcal{S}}$ GWGiga Watt **Ideality Diode Factor** а kWKilo Watt Leakage Current i_{sh} loss of the inductor series resistance P_{r_i} Number Of Cells That Connected In Series N_{s} Off-time t_{off} On-time t_{on} Open Circuit Voltage V_{OC} $d_{optimum} \\$ Optimum Duty Cycle Overall Duty Cycle $d_{overall}$ Photo Generated Current I_{ph} Photo Generated Current at std. $I_{ph.ref}$ P **Power** P_{mn} Power at MPP **PV** Output Current I_{PV}

PV Output Voltage

 V_{PV}

 G_{ref} Reference Solar Radiation Reference Temperature T_{ref} **Short Circuit Current** I_{sc} Short-Circuit Coefficient Of Temperature at std. K_o Solar Radiation G Switch voltage drop V_{sw} Temperature Voltage V_T Total time duration T_s V Volt V_{mp} Volt at MPP

 W/m^2 Watt / Meter square

List of Abbreviations

AC Alternating Current

ANN Artificial Neural Network

CSTE Concentration of Solar Thermal Energy

CCM Continuous Conduction Mode CSA Cuckoo Search Algorithm

DC Direct Current

DCM Discontinuous Conduction Mode DFIG Doubly feed induction generator

EPRT Energy Payback Time

Fig. Figure

FLC
 GA
 HCM
 IC
 Fuzzy Logic Control
 Genetic Algorithm
 Hill Climbing Method
 Incremental Conductance

ICM Incremental Conductance Method

MPP Maximum Power Point

MPPT Maximum Power Point Tracking

msec. Mile Second

PSO Particle Swarm Optimization

PMSG Permanent Magnet Synchronous Generator

P&O Perturb and Observe

PV Photovoltaic

PWM Pulse width modulationRCC Ripple Correlation Control

SDM Single diode model
SSA State-Space Averaging

SRFVC Synchronous reference frame vector control

VSC Voltage source converter