

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

BIOCHEMICAL STUDIES OF XANTHINE OXIDASE IN MILK

Thesis submitted by

Magda Abd El- Aziz Abd El- Raof Kher El- Din.

FOR THE FULFILLMENT OF DOCTOR
PHILOSOPHY IN SCIENCE
(BIOCHEMISTRY)

Supervised By

Prof. Dr. Mohamed Osman I. Refaie

Prof. of Biochemistry

Laboratory of Biochemistry

Faculty of Science

University of Cairo

Prof. Dr. Hayam El-Gazzar

Prof. of Dairy Chemistry
Dairy Chemistry Department
Animal Production Res. Inst.
Ministry of Agriculture

Approval Sheet for Submission

Title of (Ph. D.) Thesis: Biochemcial Studies of Xanthine Oxidase in Milk.

Name of the candidate: Magda Abd El Aziz Abd El Raof Kher El-Din.

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Mohamed Øsman I. Refaie

Signature:

2- Prof. Dr. Hayam El- Gazzar

Signature: Prof. Dr. Hayaun Et Gayan

Prof. Dr. Sadek. E. Abdou

Chairman of Chemistry Department.

Faculty of Science Cairo University.

Abstract

Name: Magda Abd El Aziz Abd El Raof Kher El-Din.

Title of Thesis: Biochemcial Studies of Xanthine Oxidase in Milk.

Degree: (Ph.D) Thesis, Faculty of Science Cairo University, 2001 /2002.

This work has been carried out to prepare and purify milk xanthine oxdiase (XO). Milk XO was separated and purified by gel chromatographic methods. The elution profile recorded two peaks, dimeric and monomeric XO respectively. The inhibitory effect of folic acid, sod. ascorbate, sod. bisulfite on the activity of XO was monitored by incubating the enzyme with different concentrations of these inhibitors. Moreover the effect of morin and myricetin as flavonoids on the XO activity were also studied. The interactions of milk XO with some modifiers chemical such as N-phenylmaleimide. p-toluenesulfonyl chloride, and 2- mercaptobenzimidazole were examined spectrophotometrically.

Key Words: Milk-enzyme, Xanthine-oxidase, Purine-catabolism, Gout, Uric acid, Enzyme-assay, Purification, Inhibition, Modification, Modified-enzyme.

Supervisors:

1- Prof. Dr. Mohamed Osman I. Refaie

2- Prof. Dr. Hayam El-Gazzar Prof Dr. Hayam El Gallar

Prof. Dr. Sadek. E. Abdou

Chairman-of Chemistry Department.

Faculty of Science Cairo University.

ACKNOWLEDGEMENT

I would like to express my deep thanks and gratitude to professor Dr. Mohamed Osman Ibrahim Rafaie, professor of biochemistry, department of chemistry, faculty of science, university of cairo for this supervision, valuable suggestions and constructive critic through out the course of this investigation.

Sincere thanks should be expressed to professor Dr. Hayam El.Gazzar, professor of dairy chemistry, animal production research institute, ministry of agriculture for her supervision, appreciated advice, and the facilities, she offered to carry out this work.

Thanks also are due to the staff members and all may colleagues of dairy chemistry research department, animal production research institute for co-operation and help they devoted during this study.

Special appreciation is expressed to my family.

CONTENTS

CHAPTERS	<u>Page</u>
I. INTRODUCTION AND AIM OF THE WORK	<u> </u>
I.1. Milk	1
I.2. Milk enzymes	4
I.3. Xanthine oxidase	14
I.4. Aim of the work	25
II. REVIEW OF LITERATURE:	
II.1. Isolation and purification of xanthine oxidase from milk	27
II.2. Molecular structure and properties of xanthine oxid	ase32
II.3. Mechanism of action of xanthine oxidase	48
II.4. Inhibition of xanthine oxidase	60
II.5. Chemical modification of some function groups of enzyme	69
III. MATERIALS AND METHODS:	
III.1. Separation and purification of xanthine oxidase from buttermilk	73
III.2. Examination of milk xanthine oxidase activity	0.0

III.3. Chemical modification of xanthine oxidase by
different modifiers93
IV. EXPERIMENTAL RESULTS:
IV.1. The purification of separated milk xanthine oxidase from buttermilk103
IV.2. Inhibition of milk xanthine oxidase by different inhibitors 112
IV.3. Modification of SH groups of milk xanthine oxidase129
V. <u>DISCUSSION</u> :
V.1. Separation and purification of xanthine oxidase from buttermilk143
V.2. Inhibition of milk xanthine oxidase148
V.3. Modified milk xanthine oxidase 156
VI. ENGLISH AND ARABIC SUMMARY163
VII. REFERENCES168

LIST OF ABBREVIATIONS

A

Absorbance.

AFR

Activity to Flavin Ratio.

BDH

British Dray Houses Chemicals Ltd.

CCCD

Centrifugal counter – current distribution.

DEAE

Diethyl amino ethyl.

dil.

Dilution.

EDTA

Ethylenediamine - tetraacetic acid.

FAD

Flavin adenine dinucleotide.

g/ml

Gram per millilitre.

hr.

Hour.

M

Mole.

mg

Milligram.

min.

Minute.

mM

Millimole.

Mol. Wt.

Molecular weight.

mU/ml

Milliunits per millilitre.

 NAD^{+}

Nicotinamide adenine dinucleotide.

nm

Nanometer.

OX.

Oxidized.

PEG

Polyethylen glycol.

red.

Reduced.

RPM

Rotation per minute.

Sec.

Second.

Sod.

Sodium.

T.C.A.

Trichloroacetic acid.

U/mg

Unite per milligram.

U/ml

Unite per millilitre.

UV

Ultraviolet.

Vol.

Volume.

Xan.

Xanthine.

XDH

Xanthine dehydrogenase.

XO

Xanthine oxidase.

GH

Growth hormone.

EGF

Epidermal growth factor.

MFGH

Milk fat globule membrane.

ELISA

Enzyme linked immunosorbent assay.

hXDH

Human xanthine dehydrogenase.

Pt.

Pterin

LIST OF FIGURES

<u>Figure</u> Pag
(1) Purine catabolism from general pool of the body16
(2) Big toe in gout disease as represented in text book
of biochemistry by Voet et al., (1998)23
(3) Structure of molybdenum cofactor (MoCo) and
coordination of Mo in xanthine oxidase as suggested
by Kramer et al., (1987)33
(4) The amino acid sequence of milk xanthine oxidase36
(5) Molecular structure of the XDH dimmer divided into
the three major domains and two are connecting loops.
The two monomers have symmetry related domains
in the same colors, inlighter shades for the monomer
on the left and in darker shades for the monomer on
the right39
(6) Stereo representation of salicylate as bound in the
Mo - pt. active site of XDH plus corresponding
$2F_o - F_c$ electron density contoured at $1 \circ$ cutoff.
cofactor, inhibitor, the two sandwiching residues
Phe ₉₁₄ and Phe ₁₀₀₉ , and Glu ₁₂₆₁ are labeled41
(7) FAD – and Fe / S11 – binding site of XDH. The view is
into the cleft toward the Si – site of the flavin ring43

<u>Figure</u>	٠٠,	e e e e e e e e e e e e e e e e e e e	Page
<u>rigure</u>	٠.٠,	n en	<u>Pag</u> e

_*

•

•

?

(8)	Stereo representation of the change in conformation	
	shown by an active site loop (Gln 423 - Lys 433) on	
	the XDH to XO transition. The green orientation	
	represents the conformation it adopts in XDH and the	
	red trace follows its path in XO	-46
(9)	The electrostatic environment looking down into the	
	FAD binding site for XDH (A) and XO (B). The FAD	Ē
	molecule is shown in capped-cylinders representation.	
	Electro negative regions are colored in red and electro-	
	positive regions in blue	47
(10)	The proposal reaction mechanism of xanthine oxidase	
	with xanthine	52
(11)	Three intermediates of the reductive half-reaction of	
	xanthine oxidase with 2-hydroxyl- 6-methylpurine	-53
(12)	The proposal kinetic mechanism for the reaction of	
	xanthine oxidase with excess substrate	-58
(13)	Proposed catalytic cycle for xanthine oxidation by .	
	xanthine oxidase	59
(14)	The reaction of allopurinol with xanthine oxidase	-61
(15)	The chemical structure for some substrates analogs	
	of xanthine oxidase	-63
(16)	Structure of BOF- 4272. Left panel (-) isomer;	
	right panel (+) isomer	64
(17)	The main classes of the flavonoids and related compounds	-67