

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

"Evaluation of Fracture Resistance of Anterior Minimally Invasive Cubic Zirconia Restorations"

(In vitro Study)

Thesis submitted to the Faculty of Dentistry, Ain Shams University

For

Partial Fulfillment of Requirements of the Doctorate degree in Fixed Prosthodontics

 $\mathbf{B}\mathbf{y}$

Omar Hussein Mohamed Abdelbary

Assistant Lecturer of Fixed Prosthodontics, Future University

(B.D.S, Ain Shams University-2003, M.D.Sc, Ain Shams University-2015)

Faculty of Dentistry Ain Shams University 2021

Supervised By

Dr. Marwa Mohamed Wahsh

Professor of Fixed Prosthodontics

Faculty of Dentistry, Ain Shams University

Dr. Amr Saleh El-Etreby

Associate Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University.

بسم الله الرحمن الرحيم

{قالوا سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم}

صدق الله العظيم

سورة البقرة {32}

Acknowledgement

I am greatly honored to express my thanks and deep gratitude to *Dr. Marwa Mohamed Wahsh* Professor of Fixed Prosthodontics, Ain Shams University, for her valuable guidance and support throughout this work. I benefited greatly from her experience and knowledge.

I would like to express my deepest gratitude to *Dr. Amr Saleh El-Etreby*, Associate Professor of Fixed Prosthodontics, Ain Shams University, for his meticulous advice and valuable comments throughout the work. I really apperciate his effort and support

Finally, I would like to thank all staff members of fixed prosthodontics department, Future University for their help and encouragement during the course of this work.

To the soul of my father

To my daughters

To my mother, my wife, and my brother

LIST OF CONTENTS

List of Tables	i
List of figures	vi
Introduction	1
Review of literature	3
Statement of the problrn	39
Aim of study	40
Materials and Methods	41
Results	90
Discussion	114
Summary and Conclusion	123
References	126
Arabic Summary	

List of Figures

Figure 1: KATANA UTML blank	42
Figure 2: GC Initial LiSi Press ingots	43
Figure 3: Breeze Self Adhesive Resin Cement	44
Figure 4: Z-Prime	45
Figure 5: Porcelain Etchant 9.5%	46
Figure 6: Porcelain Primer	47
Figure 7: Labial and incisal preparations of the first design	50
Figure 8: Palatal preparation of the first design	51
Figure 9: Proximal preparation of the first design	52
Figure 10: Facial preparation of the second design	53
Figure 11: Palatal preparation of the second design	53
Figure 12: Proximal preparation of the second design	54
Figure 13: Facial preparation of the third design	55
Figure 14: Palatal preparation of the third design	55
Figure 15: Proximal preparation of the third design	56
Figure 16: Fabrication of acrylic resin base	57
Figure 17: The prepared teeth in the acrylic base	57
Figure 18: Replisil silicone duplicating material	58
Figure 19: The prepared teeth and acrylic base in the silicone mesetting.	
Figure 20: Negative replica of the teeth with the acrylic base in the mold	
Figure 21: The epoxy resin die.	60
Figure 22: Epoxy resin die sprayed with scanning powder	61

Figure 23: Scanning of epoxy resin die	. 62
Figure 24: 3D reconstruction of the scanned epoxy resin die	62
Figure 25: Job definition at Exocad	. 63
Figure 26: Virtual model of a prepared tooth (Facial view)	. 64
Figure 27: Virtual model of a prepared tooth (incisal view)	. 64
Figure 28: Finish line detection (facial view)	65
Figure 29: Finish line detection (incisal view)	65
Figure 30: Axis of insertion	. 66
Figure 31: Final design	. 66
Figure 32: Exocad measuring tool used to measure finish line thickness	67
Figure 33: Exocad measuring tool used to measure mid-facial thickness restoration	
Figure 34: Exocad measuring tool used to measure incisal thickness restoration	
Figure 35: Nesting of Katana UTML	69
Figure 36: Roland DWX-51D milling machine.	69
Figure 37: Removing the sprue from zirconia	. 70
Figure 38: Tabeo- Zirkon 100 zirconia furnace	71
Figure 39: Zirconia crown on alumina sintering beads before sintering	. 71
Figure 40: Noritaki clear glaze	. 72
Figure 41: Application of glaze to zirconia restoration	. 72
Figure 42: Checking the thickness of zirconia crowns with digital caliper	. 73
Figure 43: Wax patterns attached to the ring base former through the sprues	
Figure 44: Wax patterns ready for investment	. 74

Figure 45: Renfert twist vacuum mixer	75
Figure 46: Brush technique	76
Figure 47: Filling the cylinder with the investment material	76
Figure 48: Base former with investment material extruded	77
Figure 49: Removal of investment ring	77
Figure 50: Vulcan A-550 burn out furnace	78
Figure 51: The ingot being placed into the ring	78
Figure 52: The plunger placed into the ring	79
Figure 53: Cutting the ring at the level of the plunger	79
Figure 54: Rough devesting	80
Figure 55: Crowns in invex liquid	80
Figure 56: GC Initial Glaze powder and liquid	81
Figure 57: Epoxy resin die after air abrasion	82
Figure 58: Sandblaster nozzle and zirconia restoration on sedevice	
Figure 59: Application of hydrofluoric acid to LiSi crowns	83
Figure 60: The crown being filled with self-adhesive resin cement.	84
Figure 61: Application of load during cementation using device	
Figure 62: Cemented restoration facial view	85
Figure 63: Cemented restoration palatal view	85
Figure 64: Mechatronik thermocycler	86
Figure 65: Instron universal testing machine	87
Figure 66: Restoration being loaded	88
Figure 67: Nikon stereo microscope	89