

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Nanoantenna for Sensing Applications

A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science In Electrical Engineering

(Electronics Engineering and Electrical Communications)

By

Ahmed Shaker Abdeen Hassanen

Bachelor of Science In Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, El-Shrouk Academy, 2012

Supervised By

Prof. Diaa Abdel-Maguid Khalil

Prof. Ahmed Mohamed Attiya

Assoc. Prof. Mohamed Abdel Azim Abdel Hamid Swillam

Cairo - (2020)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications

Nanoantenna for Sensing Applications

By

Ahmed Shaker Abdeen Hassanen

Master of Science In Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain-Shams University, 200

Examiners' Committee

Name and Affiliation	Signature
Prof. Saber Helmy Zainud-Deen	
Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.	
Prof. Amr Mohamed Ezzat Safwat	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University.	
Prof. Diaa Abdel-Maguid Mohamed Khalil	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University.	•••••
Prof. Ahmed Mohamed Attiya	
Microwave Engineering Department, Electronics Research	
Institute (ERI), Cairo, Egypt.	•••••

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Ahmed Shaker Abdeen Hassanen

		S	j	Ę	3	n	l	a	t	U	l	r	e			
									••							

Researcher Data

Name : Ahmed Shaker Abdeen Hassanen

Date of birth : 15 September 1990

Place of birth : Sharkia Governorate

Last academic degree : Bachelor of Science

Field of specialization : Electronics and communication

University issued the degree : El-Shrouk Academy

Date of issued degree : July 2012

Current job : Research Assistant at Electronics Research Institute

Thesis Summary

This thesis studies optical antennas in the IR range. Optical antennas have been studied based on two sections. The first section is studying Siliconon-Insulator (SOI) grating coupler for coupling the light between an optical fiber and a strip waveguide at operating wavelength 1550 nm based on the available techniques of fabrication. However, the grating coupler has a drawback in the method of coupling as it depends on the incident angle of the light. Therefore, the second section of the thesis solves the problem mentioned above by studying the nanoantenna for coupling and sensing. Nanoantennas can be used for coupling the light, and the incident light, in this case, is perpendicular to the nanoantenna structure. Furthermore, different nanoantenna arrays structures have been studied to be operated at near-infrared (IR) and mid-IR, paving the way to be used as a compact sensor for condensed phase analytes or biomedical enzymes with high efficiency.

Finally, this thesis suggests a design of highly doped semiconductor nanoantenna array operating in the Mid-IR, which can be used for sensing condensed phase analytes. These analytes work as biomarkers to detect the enzymes in the blood and work as a biomedical sensor.

The thesis is divided into five chapters, as listed below:

Chapter 1:

This chapter introduces a summary of the other chapters starting with the IR range applications and then briefly discusses the optical properties of the IR range materials, including the plasmonic material and the plasmonic effect. It will then briefly discuss the optical waveguides concentrating on the SOI waveguides and Gap-SPP waveguide as it will be discussed in chapters 3 and 4, respectively. Then a brief discussion about the classification of nanocouplers is introduced. Finally, it presents detail for each chapter.

Chapter 2:

This chapter starts with a review of the nanoantenna. Based on chapter one, it discusses nanoantennas applications as a coupler with nanophotonic waveguides at the near IR range. Also, it presents a grating coupler review to illustrate the literature designs for SOI grating coupler to couple the nanophotonic waveguide with an optical fiber. Furthermore, the nanoantenna arrays review is presented too. Then it briefly discusses a literature review about decreasing the gap distance of the nanoantenna array.

Chapter 3:

This chapter discusses the methodology for designing SOI grating coupler for input and output coupling between the nanophotonic waveguide and an optical fiber at an operating wavelength based on the available techniques of fabrication. This type of coupling technique depends on the angle of the incident light. Hence, the coupling efficiency between the nanophotonic waveguide and the optical fiber is discussed in detail. FDTD simulations of the design are included to clarify each parameter's effect to obtain the maximum coupling efficiency. These parameters, like the grating period, the thickness of the nanophotonic waveguide, the inclination angle of the optical fiber, and the grating width.

Chapter 4:

This chapter is starting with designing a simple structure of dipole nanoantenna coupled with a nanophotonic waveguide. Then, it discusses different structures of nanoantenna arrays in the near IR-range by using gold metal. Next, studying a modification on those structures to be used as an efficient sensor to detect a minimal change of the surrounding medium. Furthermore, sensitivity analysis is proposed for each design. The second section of this chapter discusses an efficient, highly doped germanium nanoantenna array, which can be used as a sensor for condensed phase analytes operated at the Mid-IR range. The

incident light in this design is perpendicular to the nanoantenna array. The sensing technique in the aforementioned structure depends on the reflection, which can be used as a biomedical sensor.

Chapter 5:

This chapter summarizes the outline of the thesis and discusses the recommendations and suggestions in future work.

Keywords: Nanoantenna, Plasmonics, Semiconductor nanoantenna, Sensing, Grating Coupler, Silicon photonics, Doped Ge, SOI.

Acknowledgment

First of all, I am deeply grateful to Allah. Coming from the gratification of my supervisors whom their contribution has raised the quality of this thesis. They have always supported me and have given me enthusiasm for science. They have patiently guided me.

I would like to express the most profound appreciation to my committee chair, **Prof. Diaa Khalil**, for his advice and guidance, which has always been a source of inspiration encouragement throughout the work. without his encouragement and careful supervision, this thesis would never have taken shape. I gratefully acknowledge the support and guidance from my work Electronics Research Institute, most particularly **Prof. Ahmed Attyia**, for his support, guidance, encouragement, and patience that he was ever ready to give me during the whole period that took me to complete this work. I am also grateful to Prof. Mohamed Swillam for his advice and guidance, besides paving the way for me to learn nanophotonics design.

Furthermore, I most grateful to my best friend and beloved wife, **Esraa**, for being extremely supportive and unboundedly patient while I was working on finishing this work. I also would like to thank my little daughter, **Ayla**, for giving me unlimited happiness and pleasure. Finally, I feel indebted to my family members for their continuous support and encouragement, especially my **parents**.

LIST OF CONTENTS

Title	Page No.
LIST OF CONTENTS	i
LIST OF TABLES	. iv
List of Figures	V
LIST OF ABBREVIATIONS	. xi
Chapter (1): Introduction	1
1.1Motivation	1
1.2 Applications of Infrared	2
1.2.1 Optical and IR Sensors	6
1.3. Optical properties of the materials in IR	8
1.4 Optical waveguides	. 16
1.4.1 SOI platform	. 17
1.4.2 Plasmonic waveguides	. 19
1.5 Nano couplers	. 20
1.5.1 Classifications of Nanocouplers	. 23
1.6 Organization of the thesis:	. 24
Chapter (2): IR couplers and Nanoantennas	26
2.1 Introduction	26
2.2 Nanoantenna	27
2.1.1 Nanoantenna applications	. 28
2.3 Nano dipole antenna as coupler	33
2.4 Plasmonic array of nanoantennas	38
2.5 Grating Coupler	40

2.5.1 The Challenge of coupling between silicon	
nanophotonics and optical fibers	41
2.5.2 Different structures of SOI Grating couplers.	43
2.6 Survey on nanoantenna applications	49
Chapter 3: Design and Analysis of Different	Grating
Couplers	56
3.1 Introduction	56
3.2 Design parameters	58
3.3 Review Discussion	60
3.4 The Design methodology of a grating coupler	65
3.5 Analytical design of the grating coupler	67
3.6 2D-FDTD Grating Coupler	69
3.7 Compact grating coupler	78
3.7.1 Optimization of the results for different thick	nesses 80
3.7.2 S parameters - 2D	80
3.7.3 Increasing the coupling efficiency:	82
3.8 3D-FDTD Grating Coupler	83
3.8.1Studying taper section	84
3.8.1.1 Theory of taper section	85
3.8.2 Results of the compact grating coupler	88
Chapter (4): Nanoantenna	90
4.1 Introduction	90
4.2 Gap-SPP	90

 2

4.3 Designing Nanoantenna as a coupler with pla	ismonic gap
WG	92
4.4 Nanoantenna Array in NIR range	99
4.4.1 Nanoantenna structures at	99
4.4.1.1 Ellipse nanoantenna array	104
4.4.1.2 Rectangular nanoantenna array	106
4.4.1.3 Circular nanoantenna array	108
4.4.1.4 Bow-tie nanoantenna array	110
4.4.2 Nanoantenna structure at	112
4.5 Nanoantenna in Mid-IR range	115
4.5.1 Highly doped semiconductors	116
4.5.2 Ellipse nanoantenna array	117
4.5.3 Interaction between the proposed nano	antenna and
biomolecules	119
4.6 Conclusion	120
Chapter 5: Conclusion and suggestion	s for future
work	122
5.1 Conclusions	122
5.2 Future Work	123
References	125

LIST OF TABLES

Table No.	Title	Page No.
the opera	eters of metals according to t ting frequency of the interbar	nd transition represented
Table (3-1) The ge	ometry parameters of the grat	ting coupler77
, , .	nized design of the grating	•
Table (4-1) Ellipse	dimensions	118

LIST OF FIGURES

Figure No.	Title	Page No
Fig.1. 1 Electromagnet	ic spectrum & IR region	2
Fig.1. 2 IR spectroscop	y regions	4
Fig.1. 3 Classification	of optical detection	4
Fig.1. 4 The absorbance	e of different gases in the MIR range	e7
Fig.1. 5 SOI wafer that	is commonly used in CMOS electro	onics18
• • • • • • • • • • • • • • • • • • • •	veguides which are commonly used	
	ropagates at the interface between	
Fig.1. 8 Simple illustra	tion of nano coupler as a funnel	21
-	ne light from dielectric WG (left) to	•
Fig.1. 10 Classification	of nanocouplers	24
Fig.2.1. DC equivalent	circuit of the thermal nanoantenna.	28
Fig.2.2 Nanoantenna fo	or sensing	29
Fig.2.3 Nanoantenna fo	or wireless communications	30
molecule and co	ew of NSOM for scanning single mparison between the near field me ge compared to the MHz to GHz rar	easurements
	antenna for generating spontaneous p	
Fig.2.6 Geometry of di	pole nanoantenna	35
Fig.2.7 Input impedance	e of dipole nanoantenna	37
Fig.2.8 Different struct	ures of nanoantennas arrays for sens	sing39
-	n process of an array of nanoantenna prication process	
	light between two optical fibers usi	

Fig.2.11 The coupling scale differences
Fig.2.12 Geometry of (a) Uniform grating coupler, (b) Non-uniform grating coupler and (c) Modified uniform grating coupler44
Fig.2.13 Comparison between the coupling efficiency of uniform and non-uniform grating structures
Fig.2.14 Geometry of anisotropic grating structure46
Fig.2.15 Directivity of (a) Uniform grating coupler, (b) Anisotropic grating coupler
Fig.2.16 Coupling efficiency of a directive grating coupler46
Fig.2.17 Schematic diagram of SOI blazed GC
Fig.2.18 Schematic diagram of the Slanted SOI WG48
Fig.2.19 The effect of the reflectivity angle versus the slanted angle.48
Fig.2.20 (a) Schematic diagram of the near field measurement as a rectangular hole with dimensions ax and ay punctured in a gold thin film that is deposited over the GaP crystal layer. (b) FDTD simulations at resonance frequency 0.2 THz and the dimensions of the rectangle ax = $10\mu m$ and ay = $300\mu m$ 49
Fig.2.21 The schematic diagram of the photoresist nanoantenna structure
Fig.2.22 Electric field for an element of bow-tie nanoantenna array.51
Fig.2.23 (a) Schematic diagram of nanoantenna array, (b) Scanning Electron Microscope (SEM) for the structure at the nanogap region at the QD resonance wavelength for L=8 μ m, h=60nm, Gx=20nm, Gy=14 μ m and L=8 μ m
Fig.2.24 (a) The effect of changing the dimension of nanoantenna array on the transmittance, (b) illustrated representation of single layer QDs covering the nanogap region. (c) SEM image of the nanogap area covered with QDs illustrates the distribution of the field above the sensing area, (d) magnified QD layer
Fig.2.25 Schematic diagram of a single nanoslit antenna, which is illuminated by a focused THz beam. (b) Adding adhesive tape that polarizes the nanogap pattern
Fig.2.26 NIR transmission of nanoslit array at different dimensions of the gap. The first Fabry-Perot resonance at gap = 20nm and

10nm, While at gap=5nm and 2nm, indicate the second-order Fabry-Perot resonance54
Fig.2.27 2D FEM simulation for single nanoslit (a) Red squares represent the measured field enhancement at f=0.3THz versus the gap width, while the blue triangles represent the modeling filed enhancement. (b) The amplitude of the electric field at 2nm width nanogap slit and thickness of gold around 150nm
Fig. 3.1 (a) 3D diagram of the grating coupler, (b) Cross-section diagram of the grating coupler
Fig. 3.2 Silicon-On-Insulator SOI wafer cross-sectional view58
Fig. 3.3 The output of the grating coupler. (a) When the grating period matches with the optical wavelength inside the grating. $\frac{\lambda_0}{n_{\text{off}}} = \Lambda$.
Besides, the output in the vertical direction is the first diffraction order, while the back reflection is the second diffraction order. (b) When the incident wavelength is smaller than the Λ grating period $\frac{\lambda_0}{n_{\rm eff}} < \Lambda$, vertical output at a detuned angle thus no second order back reflection. The input of the light comes from the left on the waveguide. As shown in (b) is the best for coupling, as there are not any back reflections
Fig. 3.4. Bragg condition of the grating coupler (one-dimensional periodic structure). (a) grating coupler's periodicity, (b) Describes the diffraction components of the diffracted wave, (c) calculating the matched angle with a diffracted wave when the surrounding medium is air, (d) Represents the diffraction into the substrate to be matched with incident angle
Fig. 3.5 Structure of a grating coupler
Fig. 3.6 2D grating coupler to couple the light with a slap WG (with thickness 50nm)
Fig. 3.7. 2D simulations of the grating coupler, simulate an optical fiber mode source to inject the light into the waveguide70
Fig. 3.8. The electric field versus length when injecting slab mode source
Fig. 3.9. Electric field intensity as a function of the wavelength and incident angle.