

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Role of Vitamin D Receptor Polymorphism in Nephropathy of Type II Diabetes Mellitus patients

A thesis submitted for the degree of master in science as a partial fulfillment for requirements of the master degree in science

By
Noha Mohammed Sharkawy
(B.Sc. in Biochemistry/Chemistry, 2007)

Under Supervision of

Prof. Dr. Dina M. Seoudi

Professor of Biochemistry
Faculty of science - Ain Shams University

Dr. Abdel-Rahman B. Abdel-Ghaffar

Assistant Professor of Biochemistry Faculty of science -Ain Shams University

Dr. Doaa Mostafa Gharib

Assistant Professor of Medical Biochemistry and Molecular Biology
Faculty of Medicine- Cairo University
2020

Dedication

At first, I praise and thank Allah for his greatness and for giving me the strength and courage to complete this thesis.

I would like to dedicate this work with all my deepest love and appreciation to every member of my faithful family, father, mother, brother, sister and my husband for their endless love, support and encouragement and for all my friends and those from whom I have learned, whatever and whenever they are.

Noha M. Sharkawy

Declaration

1 declare that this thesis has been composed and

the work recorded here has been done by me.

1 have not been submitted for any other degree at

thesis or any other university.

Noha M. Sharkawy

Acknowlegement

I wish to express my deepest gratitude to **Professor. Dr. Dina M. Seoudi,** Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for kindly supervising the present work and all facilities throughout this work.

I am also sincerely grateful to **Dr. Abdel-Rahman B. Abdel-Ghaffar,** Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for continuous guidance, endless ideas, encouragement and all the time he devoted for reading and correcting the manuscript. His continuous support is very helpful to complete this work and his advices and support are deeply appreciated.

My thanks are also extended to **Dr. Doaa Mostafa Gharib**, Assistant Professor of Medical Biochemistry and molecular biology, Faculty of Medicine, Cairo University for providing great interest in the practical part in this study.

I warmly wish to thank my family; especially **My Parents & My Husband** for the support throughout long years, without their valuable encouragement, this work wouldn't come to light.

Finally, I would like to thank everybody who was a part of this work however; his name wasn't listed here because the list would be too long. It has been a pleasure to work with all of you...Thanks.

Contents		
Title	Page	
List of Abbreviations	I	
List of Figures	IV	
List of tables	VI	
Abstract	VII	
Chapter I : Introducti	ion	
Introduction	1	
Chapter II: Aim of wo	ork	
Aim of the work	4	
Chapter III: Review of Lit	erature	
1. Diabetes mellitus (DM)	5	
1.1. Definition of DM	5	
1.2. Classification of diabetes	6	
1.2.1 Common types of diabetes	6	
1.2.2. Type 2 diabetes mellitus (T2DM)	7	
1.3. Epidemiology of T2 DM	8	
1.3.1. Epidemiology of T2DM	8	
worldwide		
1.3.2. Epidemiology of T2DM in Egypt	9	
1.4. Diagnosis of diabetes	10	
1.5. Risk factors for type 2 DM	12	
1.6. Pathophysiology of T2DM1.7. Diabetic complications	13	
1.7. Diabetic complications	14	
2. Kidney anatomy	15	
3. Diabetic nephropathy (DN)	18	
3.1. Definition of DN	18	
3.2. Classification of DN	18	
3.3. Risk factors for DN	20	

Contents

3.4. Epidemiology of DN	21
3.4.1. Epidemiology o DN worldwide	21
3.4.2. Epidemiology of DN in Egypt	21
3.5. Diagnosis of DN	22
3.5.1. Used biomarkers and their	23
predictive values	23
3.6. Molecular mechanisms involved	24
in DN pathogenesis	27
3.6.1. Increased polyol pathway flux	25
3.6.2. Accumulations of AGEs	27
3.6.3. PKC pathway	28
3.6.4. Increased flux through the	30
hexosamine pathway	
3.6.5. Relationship of these pathways	31
4. Vitamin D	32
4.1. Sources of vitamin D	32
4.2. Epidemiology of vitamin D	33
deficiency	33
4.3. Metabolism of vitamin D	34
4.4. Molecular action of vitamin D	35
4.4.1. Action of Vitamin D on T2DM	36
4.4.2. Mechanism of action of vitamin D	42
on DN	72
5. Vitamin D receptor (VDR)	45
5.1. VDR gene location	45
5.2. Polymorphisms in VDR gene	46
5.2.1. Main types of VDR gene	45
	47
polymorphisms	47
polymorphisms	
polymorphisms Chapter IV: Subjects and N	Methods
polymorphisms Chapter IV: Subjects and N 1. Subjects	Methods 50

Contents

2. Samples collection	52	
2.1.Blood samples	52	
2.2.Urine sample	52	
3. Biochemical examinations	53	
3.1.Quantitative determination of	53	
Glucose		
3.2.Quantitative determination of 55		
Glycosylated Hemoglobin (HbA1C)		
3.3.Measurement of HOMA-IR	58	
3.4.Quantitative determination of Urea	62	
in serum		
3.5. Quantitative determination of serum	64	
Creatinine		
3.6. Quantitative determination of	66	
Microalbuminuria		
4. Genetic investigations	68	
4.1.DNA extraction	68	
4.1.1.Spin-column technique of DNA	68	
extraction		
4.1.2.Quantitative assessment of DNA	71	
4.1.3.Qualitative assessment of DNA 72		
using gel electrophoresis		
4.2.DNA amplification using PCR	72	
4.3.Detection of PCR products using	75	
gel electrophoresis		
4.4.Genotyping via PCR-RFLP	79	
5. Statistical Analyses	80	
Chapter V: Results		
1. Demographic and clinical	81	
characteristics of the studied		
subjects		
2. Descriptive analysis of biochemical	82	
parameters		

Contents

2.1.Dtermination of HbA1C	82
2.2.Determination of plasma Glucose	84
2.3.Determination of fasting plasma	86
Insulin	
2.4.Determination of HOMA-IR	88
3. Descriptive analysis of kidney	89
function tests in the studied groups	
3.1.Determination of Urea in serum	89
3.2. Determination of serum Creatinine	90
3.3. Determination of Microalbumin in	91
urine	
4. Genetic assay	92
4.1.DNA assessment and quantification	92
4.2.Genotyping of exon 9 gene	93
polymorphism of VDR	02
4.2.1.Amplification of exon 9 of VDR	93
gene by PCR	0.4
4.2.2. <i>Taq I</i> PCR-RFLP	94
4.3. <i>Taq I</i> genotypic and allelic	95
distribution	
Chapter VI: Discussion	101
Summary	123
Conclusion	125
References	126
المستخلص العربي	1
الملخص العربي	3
المنفض الغربي	

Abbreviation

List of Abbreviations

Abbreviation	Full name
A	Absorbance
ACE	Angiotensin converting enzyme
ACR	Albumin to Creatinine ratio
AGEs	Advanced glycation end products
ANG I	Angiotensin I
ANOVA	One way analysis of variance
ATP	Adenosine triphosphate
BUN	Blood Urea Nitrogen
Conc.	Concentration
CKD	Chronic kidney disease
DAG	Diacylglycerol
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates
DN	Diabetic nephropathy
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra acetic acid
ELISA	enzyme-linked immunosorbent assay
ESRD	End stage renal disease
ET-1	Endothelin-1
EtBr	Etidium Bromide
Fig.	Figure
G	Guanine
GDPH	glyceraldehyde-3-phosphate dehydrogenase
GFR	Glomerular filteration rate
GHb	Glycosylated Hb
GLUT4	Glucose transporter 4
HbA1C	Glycated Hemoglobin