

Capecitabine in Combination with Aromatase Inhibitor Versus Aromatase Inhibitors, in Hormonal Receptor Positive Recurrent or Metastatic Breast Cancer Patients, Randomized Controlled Study (CONCEPT Trial)

Thesis

Submitted in the Partial Fulfillment of MD Degree in Clinical Oncology

By

Nada Naguib Farid Naguib

Assistant Lecturer of Clinical Oncology Ain Shams University

Under the Supervision of

Prof. Hesham Ahmed Elghazaly

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Prof. Ramy Refaat Yousef Ghali

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Assist. Prof. Nagy Samy Gobran

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Reham Mohamed Faheim

Lecturer Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, praises and thanks to God, the Almighty, for his showers of blessings throughout my research from the first and all the way to its successful completion.

I would like to express my deepest appreciation to all those who guided me through the completion of this thesis. With deep gratitude I would like to thank Professor. Dr Hesham El-Ghazaly; Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for encouraging me to conduct such a study and for his support and guidance all through.

Furthermore, I would also like to acknowledge with much appreciation Professor Dr. Ramy Refaat Yousef Ghali and Assistant Prof. Dr. Nagy Samy Gobran, Professors Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for there valuable remarks and consistent support, which have contributed a lot in the delivery of this work.

Special Thanks to Dr. Reham Mohamed Faheim; Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for always keeping her door opened to any questions and for her patience.

With much appreciation I would like to thank Professor Dr. Mai F. Tolba, Associate Professor, Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University for her contribution in the molecular part of the study and for the valuable information she provided.

Last but not the least; I would like to thank my family for their continuous support and encouragement.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Review of Literature	6
Patients and Methods	69
Results	74
Discussion	
Conclusion and Recommendations	101
Summary	102
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	American Joint Committee on Definition of Primary Tumor (T)—Clin and Pathological (pT)	nical (cT)
Table (2):	American Joint Committee on Definition of Regional Lymph Nodes- (cN) and Pathological (pN) America Committee on Cancer	–Clinical an Joint
Table (3):	Definition of Distant Metastasis (M)	22
Table (4):	American Joint Commission on Cand Anatomic Stage Groups	
Table (5):	Factors to be considered in treatment making for MBC	
Table (6):	Patient Demographic and Characteristics	
Table (7):	PFS for the CapAI versus the AI only a	arm77
Table (8):	PFS Premenopausal Patients	79
Table (9):	PFS & treatment arm in postmenopau	sal80
Table (10):	PFS in Bone Only Metastasis	81
Table (11):	PFS in Non-Bone Only Metastasis	81
Table (12):	PFS in Visceral Metastasis	83
Table (13):	PFS non-visceral metastasis	84
Table (14):	PFS in Oligometastatic Patients	85
	PFS in Non-oligometastatic	
	PFS 1ry Hormonal Resistant Patients.	
	PFS in 2ry Hormonal Resistant Patien	
	PFS in 1st line Treatment	
	PFS in Further Lines of Treatment	
Table (20):	Toxicity	92

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Number of new cases worldwide in both sexes, all ages	
Figure (2):	Number of new cases worldwide females in 2018, both sexes, all ages	_
Figure (3):	Number of new cases in Egypt in both sexes, all ages	
Figure (4):	Number of new cases in Egypt females in 2018, both sexes, all ages	_
Figure (5):	Stage Distribution for Breast Cane Race, United States, 2009 to 2015	•
Figure (6):	Five-Year Relative Survival Rat Selected Cancers by Race and St Diagnosis, United States, 2009 to 20	tage at
Figure (7):	Histological Classifications of Cancer Subtypes	
Figure (8):	Molecular Classifications of Breast Subtypes	
Figure (9):	Mechanism of action of capecitabine	42
Figure (10):	Bioactivation and metabolism capecitabine	
Figure (11):	Normal cell cycle	49
Figure (12):	Taxonomy of Mechanisms of Resist Endocrine Therapy	
Figure (13):	Cross-talk Between Signal Transand Endocrinal pathways	
Figure (14):	Hormonal therapy and Capecitabine different phases of the cell cycle	-
Figure (15):	Hormonal therapy and Capecitabine different phases of the cell cycle	•

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Hormonal therapy and capecitabine different phases of the cell cycle	•
Figure (17):	PFS for the CapAI versus the AI only	ly arm 77
Figure (18):	PFS Premenopausal patients	79
Figure (19):	PFS & treatment arm in postmenop	ausal80
Figure (20):	PFS in non-bone only metastasis	82
Figure (21):	PFS in Visceral Metastasis	83
Figure (22):	PFS non-visceral metastasis	84
Figure (23):	PFS in Non-oligometastatic	86
Figure (24):	PFS in 1st Line of Treatment	89
Figure (25):	Forest plot for all subgroups	90

List of Abbreviations

Abb.	Full term
5'-DFCR	5'-deoxy-5-fluorocytidine
	Fluorodeoxyuridine triphosphate
5-FU	·
5-FUDR	
	Advanced breast cancer
	Aromatase inhibitor
	American Joint Committee on Cancer
	Ataxia telangiectasia and Rad3-related
	Body mass index
	Breast cancer gene 1
	Breast cancer gene 2
	cyclophosphamide, Adriamycin and 5FU
-	Capecitabine plus aromatase inhibitor
	Clinical Benefit Rate
	Cyclin-dependent kinase
	Cyclin-dependent kinases
	Confidence interval
CMF	cyclophosphamide, methotrexate, and
	fluorouracil
	Corona virus disease 2019
	Computed tomography
CTCAE	Common Terminology Criteria for Adverse
	Events
	Ductal carcinoma in situ
	DNA damage response
DES	Diethyl stilbesterol
DFS	Disease-free survival
DNA	DNA deoxyribonucleic acid
DPD	dihydropyrimidine dehydrogenase

List of Abbreviations Cont...

Abb.	Full term
dThdPase	. Thymidine phosphorylase
	. Eastern Cooperative Oncology Group
	Estrogen receptor
	. Endocrine therapy
	. FDA food and drug administration
	. 5-fluoro-2'-deoxyuridine monophosphate
	. Fine needle aspiration
	. follicular stimulating hormone
	. 5-fluorouridine triphosphate
G	
GnRH	. Gonadotropin-releasing hormone
HER2	. Human epidermal growth factor receptor 2
HR	. Hazard ratio
HR	. Hormone receptor
HT	. Trastuzumab, docetaxel
HTX	. Trastuzumab, docetaxel and capecitabine
IDC	. Invasive ductal carcinoma
IHC	. Immunohistochemistry
LCIS	. Lobular carcinoma in situ
LHRH	. luteinizing hormone-releasing hormone
M	. Mitosis
MBC	. Metastatic breast cancer
MRI	. Magnetic Resonance Imaging
NR	. Not reached
NSAI	. Non-steroidal aromatase inhibitor
ORR	. Objective response rate
	. Overall response rate
	. Overall survival
PF	. phenylalanine mustard and 5-fluorouracil

List of Abbreviations Cont...

Abb.	Full term
PFS	Progression free survival
PIK3CA	Phosphatidylinositol-4,5-Bisphosphate 3- Kinase Catalytic Subunit Alpha
PO	Per Os
PR	Progesterone receptor
PTEN	Phosphatase and tensin homolog.
QD	Quaque die (daily)
QOL	Quality of life
Rb	Retinoblastoma
RECIST	Response evaluation criteria in solid tumors
RNA	RNA ribonucleic acid
RR	Relative risk
S	Synthesis
SERM	Selective estrogen receptor modulator
T	Tamoxifen
TAM	Tamoxifen
TID	Ter in die (3 times a day)
TNM	Tumor, Node, Metastasis system
TP53	Tumour protein p53.
TS	Thymidylate synthase
TTF	Time to treatment failure
UK	United Kingdom.
US	Ultrasound
VEGF	Vascular endothelial growth factor

Abstract

Background: Combination therapies are becoming the new standard of care in treatment hormonal receptor (HR) positive human epidermal growth factor receptor 2 (HER2)—negative advanced breast cancer (ABC) patients. Most of the new drugs impose great financial burden especially in low-middle income countries. The need for studies to explore less expensive combinations is becoming crucial.

Patients and methods: In this prospective randomized phase II study: we randomly assigned 95 patients with HR positive, Her 2 negative ABC, who didn't receive previous systemic endocrinal treatment for advanced disease in both arms, to receive aromatase inhibitor (AI) or capecitabine (625 mg/m² bid PO for 14 days to be repeated every 21 days) plus AI administered daily. The primary endpoint was progression free survival (PFS) and secondary end point was toxicity.

Results: The median PFS was 18.7 months for the capecitabine plus AI (CapAI) arm versus 9.8 months for the AI only arm with a p value of 0.009 with a hazard ratio (HR) of 0.46 (95% CI 0.25-0.82). The median duration of follow up was 16.8 months (95% CI for the median; 14.1 to 17.9 months). The median number cycles of capecitabine received was was 12.3 cycles (range 0-38.4). Subgroup analysis revealed significant difference in favor of the CapAI arm for the premenopausal patients (p=0.04), visceral only and non-visceral only metastasis (p=0.05, 0.04), non-oligometastatic patients (p=0.002) and patients who received treatment as first line (p= 0.02). Non-significant difference in PFS was found in the following subgroups; postmenopausal (p=0.05), bone only metastasis (p=0.22), oligometastatic (p=0.66), primary and secondary hormonal resistant patients (p=0.07, 0.07) and patients who received treatment beyond first line (p=0.32). There was no significant difference in the rates of toxicity in both arms regarding hematological toxicity (anemia, thrombocytopenia and neutropenia), fatigue, nausea, vomiting, diarrhea, mucositis. But there was significant difference in the hand foot syndrome (grade 1/2) with the 15.4% in the CapAI arm versus 0 % in the AI only arm, peripheral neuropathy (grade 1/2) with 23.1% vs 4.3% and hepatic toxicity (grade 1) 10.3% vs 0 %. Grade 3 toxicity was reported in only 3 patients in our study all in the CapAI arm (fatigue, thrombocytopenia and neutropenia). No permanent discontinuation occurred but 25% dose reduction was done in four patients due to decrease in creatinine clearance.

Conclusion: Among patients with HR positive Her2 negative ABC, combination of capecitabine with AIs showed significant improvement in median PFS than AI alone. With good tolerability and acceptable toxicity profile. Capecitabine AI combination might turn out to be the new standard of care for treatment of MBC patients. We recommend further studies with larger number of patients to be done evaluating combination therapy as first and second line treatment for ABC. ClinicalTrials.gov number NCT04012918

Keywords: breast cancer – chemo-endocrine- AI/Capecitabine

1. Introduction

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women worldwide, accounting for 25% of total cancer cases (Globocan, 2019). It is considered the most prevalent cancer among women in the Middle East and Northern Africa (Ferlay et al., 2015). In Egypt, breast cancer is the most common type of cancer among females (Ibrahim et al., 2014).

Survival of breast cancer patients depends on the disease stage. Most of the patients with localized disease experience longterm disease-free survival. Meanwhile, those who develop metastasis have a 5-year relative survival of only 24% (Siegel et al., 2015). Hormone receptor (HR) positive represent the most common subset (almost 70%) in both early and advanced disease (Clarke et al., 2012).

It is crucial to determine the menopausal status before initiation of treatment. For HR +ve / Human Human epidermal growth factor receptor 2 (Her 2) negative metastatic breast cancer patients who are premenopausal; If the patient had disease free survival (DFS) of 12 months or more, or if she was diagnosed with metastasis de novo, the recommended first line was either ovarian ablation plus tamoxifen or aromatase inhibitor (Cardoso et al., 2017). Aromatase inhibitors (AIs) are recommended for postmenopausal patients as their median progression-free survival (PFS) is between 8 and 10 months (Bonneterre et al., 2000).

Chemotherapy regimens that are prescribed in HR positive metastatic breast cancer (MBC) patients include microtubule inhibitors (including taxanes and vinca alkaloids), anthracyclines, gemcitabine, cyclophosphamide and capecitabine. But endocrinal therapy is preferred as long as the patient is not in visceral crisis (*Cardoso et al.*, 2017).

Recently new drugs that increased progression free survival (PFS) has been approved in the treatment of HR positive metastatic breast cancer (MBC) as fulvastrant (Selective estrogen receptor modulator) (*Ellis et al., 2015*) and palbocilib (Ck4/6 inhibitor) as first line (*Finn et al., 2015*) and eveirolimus (mTor inhibitor) as second line (*Pritchard et al., 2012*).

The optimum sequence of endocrinal treatment and chemotherapy has not been fully clarified, It is of great importance to bear in mind that the goal of treatment in recurrent and metastatic breast cancer is extending the progression free survival (PFS) and sustaining a good quality of life (*Cardoso et al.*, 2017).

A retrospective study by Shankar et al., that compared between combination of capecitabine and aromatase inhibitor (AI) versus capecitabine alone versus aromatase inhibitor alone showed that the median PFS of first-line treatment was significantly better for the combination with PFS 21 months vs 8 months for capecitabine and 15 months for AI. For second-line treatment, the PFS was longer in the combination

compared with capecitabine and AI groups (18 months vs. 5 months vs. 11 months, respectively) (Shankar et al., 2015).

Alvarado et al., compared combination aromatase inhibitor plus capecitabine versus capecitabine alone versus aromatase inhibitor alone. The median PFS of first-line treatment was significantly better for the combination (PFS notreached for combination vs. 3 months for capecitabine and 13 months for AI, p<0.0001). For second-line treatment, the PFS was longer in the combination compared to capecitabine and AI (PFS not reached vs. 6 months vs. 13 months, respectively, p=0.041) (Alvarado et al., 2012).

In China a Phase II trial assessed the use of of metronomic oral capecitabine therapy combined with aromatase inhibitors in postmenopausal metastatic and recurrent breast cancer resistant to first-line AIs and the results showed overall response rate (ORR) 70.5% and median PFS 9.57 months (Jian-wei et al., 2015). Lee S. Schwartzberg conducted a phase II trial which results showed that fulvastrant with metronomic capecitabine for women with HR-positive, human epidermal growth factor receptor (HER2)negative MBC had median PFS of 14.98 months (Schwartzberg et al., 2014).

Capecitabine; being cheaper and more available in economically disadvantaged countries together with the promising results of the previous retrospective trial by Shankar et al and the prospective trial by Alvarado et al; further

confirmation of such results by a prospective randomized clinical trial is crucial. Currently a phase III trial under the title of "Metronomic Capecitabine Plus Aromatase Inhibitor for First Line Treatment in HR(+), Her2(-) Metastatic Breast Cancer" with the primary results expected to be published on 2021 (Sun Yat-sen University, 2016).