

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Stress Induced by Mandibular Screw Retained Hybrid Denture on "All-On-Four" Implant Distribution: Comparison between Three Different Hybrid Denture Materials: In-Vitro Study

Thesis Submitted to Faculty of Dentistry Ain Shams University for the Partial Fulfillment of the Requirement for the Master's Degree in Oral and Maxillofacial Prosthodontics

By Essam Ragab Abd-Ellah

B.D.S Ain-shams University, 2014

Faculty of Dentistry – Ain Shams University.

Faculty of Dentistry
Ain-shams University
2020

Supervisors

Dr. Ingy Amin Talaat

Professor of Oral and Maxillo-facial Prosthodontics
Faculty of Dentistry, Ain Shams University

Dr. Yasmine Thabet

Ass prof of Oral and Maxillo-facial Prosthodontics Faculty of Dentistry, Ain Shams University

ACKNOWLEDGMENT

First of all, I'd like to express my great gratitude to **Allah**, who gave the effort for this thesis.

My sincere appreciation goes to *Prof Dr. Ingy Amin Talaat*, my senior supervisor for all I had learned from her and for her continuous help and support in all stages of this thesis. Special heartful thanks to her also for her continuous encouragement and for helping me to shape this thesis in this final shape.

I would like to express my deep gratitude and respect to **Dr. Yasmine Thabet**, whose advices and insight was valuable to me. For all I had learned from her and providing advices in this study.

Also, I'd like to thank the members of **Oral and Maxillofacial Prosthodontics Department- Ain Shams University**, from which I had learned all I knew in my research study.

Deep appreciation to the members of **Oral and Maxillofacial Prosthodontics Department- Badr University**, who supported me in the laboratory work of this study.

Essam ragab

List of Contents

nt	roduction	2
le'	view of Literature	5
le'	view of Literature	5
	1-Problems of edentulism	5
	2- Problems of conventional complete denture	5
	3-Reduction of the residual ridge (RRR)	6
	4-Implant-supported Overdenture	8
	5-All-on-4 concept	10
	A-Why all on 4 treatment concept	10
	B-What is the all on 4 concept	11
	C-All on 4 treatment consideration	12
	D-Tilted v/s non-tilted implants	12
	E-Advantages and disadvantages of All on 4 concept	13
	6-Screw retained hybrid denture (the final prosthesis)	14
	7-CAD / CAM	20
	A.CAD/CAM production concepts in dentistry	20
	B. CAD/CAM COMPONENTS	22
	C. The Additive Technology (3D printing)	24
	D. Subtractive Technology (Milling)	26
	E. Advantages and Disadvantages of Computer-Assisted Production:	29
	8-Stress Analysis	30
	A-Brittle lacquer coating technique:	30
	B-Theoretical methods:	31
	C-Finite Element Method:	31
	D-Photo elasticity	31
	E-Strain Gauge	32
۱ir	n of the study	34
νla	aterials And Methods	36
RE:	SULTS	69
Dis	scussion	82
uı	mmary and Conclusion	91
le:	ferences	95
ربح	الملخص العر	110

List of Figures

Figure	P.
Figure (1): 3D model STL view for model 1 (All-on-4 TM) design	37
Figure (2): Interactive implant.	38
Figure (3): Gingival simulator index.	39
Figure (4): The model along with the index.	39
Figure (5): 3D printer	40
Figure (6): 3D printed cast	41
Figure (7): Gingival simulator	42
Figure (8): 3D cast with implants with multi-unit abutments.	43
Figure (9): Titanium sleeves	44
Figure (10): Electronic surveyor	44
Figure (11): Labial index with the artificial teeth	45
Figure (12): Metallic framework wax pattern with retention beads	46
Figure (13): The metallic framework after casting and before polishing	47
Figure (14): Metallic framework after finishing and polishing	47

Figure	Р.
Figure (15): Metallic color was blocked by opaquer porcelain	48
Figure (16): The heat cured acrylic resin processing	49
Figure (17): The finished and polished overdenture passively seated on the cast	49
Figure (18): Titanium sleeves after trimming	50
Figure (19): Scan spray used for scanning the working model	51
Figure (20): Scanning of the working model	52
Figure (21): The final framework design	53
Figure (22): Milling the BioHPP framework via 5-axis milling machine	53
Figure (23): Sandblasting of the milled framework	54
Figure (24): MKZ primer and visio-link primer	55
Figure (25): DTK dual cured resin cement	55
Figure (26): Silicone index with the veneers	56
Figure (27): The light curing unit	57
Figure (28): The opaquer composite material	57
Figure (29): Composite material dentin shade and gingival shade	58
Figure (30): The final overdenture after finishing and polishing	59

Figure	P.
Figure (31): Long prosthetic screws in the screw access holes	60
Figure (32): The acrylic resin overdenture deflasking	61
Figure (33): Finished and polished acrylic resin overdenture	61
Figure (34): Stain gauge	62
Figure (35): Strain gauges installation	63
Figure (36): Universal testing machine	64
Figure (37): Strain-meter	65
Figure (38): Load application between second premolar and first molar	66
Figure (39): Bar Chart revealing Strains induced to Central and Peripheral Implants on Group I	71
Figure (40): Bar Chart revealing Strains induced to Central and Peripheral Implants on Group II	73
Figure (41): Bar Chart revealing Strains induced to Central and Peripheral Implants on Group III	75
Figure (42): Bar Chart revealing Strains induced to Central Implants on Group I, II and III	77
Figure (43): Bar Chart revealing Strains induced to Peripheral Implants on Group I, II and III	80

List of Tables

Table	
2 46.24	P.
Table (1): Descriptive and Comparative Evaluation of Strains induced to Central and Peripheral Implants on Group I	70
Table (2): Descriptive and Comparative Evaluation of Strains induced to Central and Peripheral Implants on Group II	72
Table (3): Descriptive and Comparative Evaluation of Strains induced to Central and Peripheral Implants on Group III	74
Table (4): Descriptive and Comparative Evaluation of Strains induced to Central Implants on Group I, II and III:	76
Table (5): Descriptive and Comparative Evaluation of Strains induced to Peripheral Implants on Group I, II and III:	79

INTRODUCTION

Introduction

The re-establishment of the completely edentulous patient is a major responsibility for the prosthodontist. However, conventional complete dentures offer reliable service, the anatomic restrictions, tissue changes below the denture and the psychological make-up of the patient contribute to the poor performance of the Prosthesis.

Implant assisted over dentures and hybrid prosthesis provides good support and retention when compared to the traditional fixed prosthesis.

The All-on-Four treatment protocol, involves the re-establishment of edentulous arches with four implants, including two anterior vertically and two posterior tilted implants (interforaminal region), which are immediately loaded by a fixed provisional denture.

Hybrid prosthesis is the suggested treatment option for patients suffering from severe alveolar ridge resorption so implant assisted over dentures are now considered as a standard treatment for highly resorbed alveolar ridge patients.

Various material combinations including metal/acrylic, metal/ceramic, BioHPP and zirconia/ceramic have been used for constructing this type of restoration.

The denture base resin is commonly based on poly methyl methacrylate (PMMA), which has several advantages such as brilliant esthetics, stability in the oral environment, and simplicity of repair. However, flexural fatigue has been considered as a influencing factor for fracture.

Cobalt chromium (co-cr) alloy was used for construction of overdenture framework due to its low cost and favorable mechanical properties such as well as

high corrosion resistance. However, loss of acrylic teeth and lack of natural color are the major drawbacks.

BioHPP (High Performance Polymer) is based on polyether-ether-ketone (PEEK) is an innovative material for creating CAD-CAM fixed and removable prostheses, because it has elastic modulus that in close to human bone suggesting homogenous stress distribution to surrounding tissues and it is also easy to mill and to polish. Milling with poly ether ether ketone (PEEK) is highly suggested as the resulting non-allergic prostheses are lighter in color than those constructed of other materials, such as Co-Cr or titanium.

CAD-CAM (Computer-Aided-Designed, Computer-Aided Manufactured) is a design, fabrication and manufacturing process used for restorative and prosthodontic treatment procedures, using biocompatible materials including alloys, ceramics and high-performance polymers. CAD-CAM also decreases chairside time and also produces good outcomes. (1)

So this study was conducted to compare stress induced by screw retained hybrid denture made from acrylic with metallic substructure versus BioHPP versus all acrylic denture base material on all on four implant distribution.