

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Engineering

Inspection Allocation Problem at Multi-stage Manufacturing System

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Doaa Mohamed Ahmed Hassan

Bachelor degree in Mechanical Engineering
(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2015

Supervised By

Prof.Dr. Nahid Hussein Afia Abdelhalim Assoc.Prof.Dr. Lamia Ahmed Shihata

Cairo - (2020)

FACULTY OF ENGINEERING

Design and Production

Inspection Allocation Problem at Multi-stage Manufacturing System

by

Doaa Mohamed Ahmed Hassan

Bachelor degree in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Amin Mohamed Kamel El-Kharbotly Design and production, Ain Shams University	
Prof. Dr. Ehab Ahmed Yassin Engineering Management, German University in Cairo	
Prof.Dr. Nahid Hussein Afia Design and production . Ain Shams University	

Date: //2020

Statement

This thesis is submitted as a partial fulfilment of Master of Science in mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signatu	re	
Doaa Moha	med Ahmed Hassa	ın
	Dat	e:

Researcher Data

Name : Doaa mohamed Ahmed Hassan

Date of birth : 23rd of May, 1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor in Mechanical Engineering

Field of specialization : Design and Production

University issued the degree : Ain Shams University

Date of issued degree : May 2015

Current job : Teaching assistant, Faculty of Engineering

and material science, German University in

Cairo, GUC.

Thesis Summary

The quality of products in different manufacturing systems has received extensive studying and attention. The aim of this study is how to reach the required quality level on the way to meet customer requirements by using available resources. Nowadays, in the highly competitive market, many organizations realized that their survival in the market depends mainly on producing high quality products and services. Applying a proper quality plan in industries is vital to cope with competitive markets and services.

The aim of the present research is to introduce a new model for optimizing inspection allocation problem (IAP) at different multistage manufacturing systems and to study all the factors that affect the IAP using different performance total cost, line efficiency and smoothness index. Therefore, the objective here is to allocate an economical number of inspection stations, which accomplish a certain level of quality and generate the correct balance among different cost components.

Many researches have studied during the past decade to enhance the quality inspection system and many mathematical models have been applied to industrial systems to improve their efficiency and productivity.

The modeling approaches used included genetic algorithms, simulated annealing, and integer liner programmingetc.

Most of the researchers dealt with the IAP in serial and non-serial manufacturing system, studying inspection allocation problem at assembly lines was rarely considered despite it is the importance.

In this thesis, A genetic algorithm is developed to solve IAP at serial lines and assembly lines manufacturing systems that produce a single product with the objective of achieving the optimal number and locations of the quality inspection points to minimize the total cost of the manufacturing line. Design of experiment is categorized to many experiments each experiment studies some factors with performance measurements to analyze Inspection allocation problem IAP as it may be affected by many factors, the concern is to study the effect of these factors on IAP, as well as the effect of possible interactions between all factors using Minitab statistical software as more than eight factors are considered and each factor has different levels to be studied.

An analysis is obtained for different factors affecting the efficiency of the inspection allocation problem at serial manufacturing line and non-serial assembly line such as inspection errors, different costs and different times

affecting the manufacturing line at two different inspection plans with 100% inspection .

The influence of the factors affecting the output of the IAP are studied using design of experiments. Several experiments are designed and conducted to investigate the effect of the input factors on the performance of the manufacturing systems both individually and interactively. The most important factors are inspection time, cycle time, inspection costs and rework costs. The designed experiments are executed on a serial manufacturing line and non-serial assembly line for both 100% inspection.

Results have shown that the model can be adapted easily to solve any inspection allocation problem with no limitation in the number of stations. It can arrange any number of tasks in a considerably short computational time with high efficiency.

Keywords:- Inspection allocation, Quality control, Assembly line, Optimization, GA, Design of experiment, ANOVA

Table of Contents

1. introduction	1
1.1. Introduction	1
1.2. Multistage manufacturing system	1
1.3. Quality inspection stations allocation problem	1
1.4. Approaches to solve Inspection allocation problem IAP	2
1.5. Aim of the present work	2
1.6. Organization of the thesis	
2. literature review	6
2.1. Introduction	6
2.2. Inspection allocation problem	7
2.3. System characterization 2.3.1. Production line configuration 2.3.2. Single inspection station or multi stage inspection station 2.3.3. Inspection types 2.3.4. Inspection Cost 2.3.5. Inspection capability 2.3.6 Solution techniques used in solving allocation of inspection sproblem	
2.4. Assembly line balancing problem combined with inspection alloproblem.	
2.5. IAP in smart manufacturing system	26
2.6. General findings	29
2.7. Research objective	30
3. the developed ga for inspection allocation problem	31
3.1. Introduction	

3.2. Problem statement	32
3.3. Model Assumptions and limitations	32
3.4. Model description	33
3.4.1. Model objective function	
3.4.2. Model constraints	
3.5. Developed GA for optimizing the IAP for serial manufacturing syst	em
3.5.1. General procedures for Genetic Algorithm Model	40
3.6. The developed genetic algorithm for (IAP) for assembly line	42
3.6.1. The developed genetic algorithm for (ALBP)	43
3.6.2. General procedures of the ALBP	45
3.7. IAP combined with ALBP using genetic algorithm	57
3.7.1. General procedures of the proposed model	
4. design of experiments	62
4.1. Introduction	
4.2. DOE Methodology	
4.2.2. The Designing phase	
4.2.3. The Conducting phase	
4.2.4. The Analyzing phase	
4.3. Designed Experiments	
4.3.1. IAP experiments for serial manufacturing system	
4.3.2. IAP experiments for assembly lines	
4.3.3. GA factors	
5. Results and Discussion	79
5.1. Introduction	79
5.2. Descriptive analysis for the factors affect the inspection allocation	
problem	80
5.3. Application of ANOVA	87
5.3.1. Analysis of variance results for 100 % inspection plan at serial	
manufacturing system	88

		28
6.	Conclusion and future work1	24
	problem IAP1	21
	5.3.9. Studying the effect of cycle time on the inspection allocation	
	1	18
	5.3.8. Studying the effect of task time on the inspection allocation proble	em
	allocation problem1	16
	5.3.7. Studying the effect of different cost factors on the inspection	
	problem IAP1	13
	5.3.6. Studying the effect of number of tasks n on the inspection allocation	on
	allocation problem IAP1	12
	5.3.5. Studying the effect of number of products Q on the inspection	
	5.3.4. Studying the effect of Z on the inspection allocation problem 1	
	1	07
	5.3.3. Studying the effect of α on the inspection allocation problem IAI	
	line system	95
	5.3.2. Analysis of variance results for 100 % inspection plan at assembly	/

LIST OF FIGURES

Figure 1-1block diagram for the plan of the present work	4
Figure 2-1 flow chart for inspection allocation problem	8
Figure 2-2 IAP Classification from literature	10
Figure 3-1 proposed model chromosome representation	41
Figure 3-2assembly line problem illustration	44
Figure 3-3precedence diagram	47
Figure 3-4 the chromosome representation	48
Figure 3-5 decoding and assignment of work stations	50
Figure 3-6 an example for one point cross over: (a) parent 1, (b) parent 2	53
Figure 3-7 after cross over following the precedence constrains: (a) child 1	, (b)
child 2	53
Figure 3-8 two point's mutation process, (a) before mutation, (b) after	
mutation.	54
Figure 3-9 block diagram for the outline of the proposed model of ALBP	56
Figure 3-10 proposed model chromosome representation	59
Figure 4-1 the precedence diagram for bench mark problem	68
Figure 4-2 stations load for assembly line before adding inspection points.	71
Figure 4-3 stations load for assembly line after adding inspection points	72
Figure 1-1 main effect plot for total	
cost94	
Figure 5-2 interaction plot for total cost	90
Figure 5-3 residual vs order plot for total cost	91
Figure 5-4 normal probability plot for total cost	97
Figure 5-5 normal probability plot for total cost	99
Figure 5-6 normal probability plot for total cost	99

Figure 5-7 main effect plot for total cost	96
Figure 5-8 main effect plot for line efficiency	98
Figure 5-9 interaction plot for total cost	99
Figure 5-10 interaction plot for line efficiency	99
Figure 5-11 main effect plot for line efficiency	101
Figure 5-12 interaction plot for line efficiency	102
Figure 5-13 main effect plot for total cost	103
Figure 5-14 interaction plot for total cost	103
Figure 5-15 normal probability plot for residual	
Figure 5-16 residual vs order	105
Figure 5-17 main effect plot for line efficiency	106
Figure 5-18 interaction plot for line efficiency	107
Figure 5-19 effect of α on the total cost	108
Figure 5-20 effect of α on the line efficiency	109
Figure 5-21 effect of Z on total cost	112
Figure 5-22 effect of Q on IAP	113
Figure 5-23effect of number of tasks on IAP total cost	114
Figure 5-24 effect of number of tasks on IAP line efficiency	115
Figure 5-25 effect of manufacturing cost on total cost	116
Figure 5-26effect of rework cost on total cost	117
Figure 5-27 effect of scrap cost on total cost	117
Figure 5-28 effect of task time on line efficiency	119
Figure 5-29 effect of task time on smoothness index	120
Figure 5-30 effect of cycle time on total cost	121
Figure 5-31 effect of cycle time on smoothness index	122
Figure 5-32 effect of cycle time on line efficiency	122