

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

بسم الله الرحمن الرحيم

ا و فَوق كُلِ ذي علْم عَلِيمُ السَّورة يُوسَف الآية رقم (٢٦)

STUDY OF SOME BIOCHEMICAL FACTORS AND P53 TUMOR SUPPRESSOR GENE IN CHRONIC VIRAL HEPATITIS C PATIENTS WITH OR WITHOUT SCHISTOSOMIASIS

BIOENS

Thesis

Submitted to

Medical Research Institute
Alexandria University
In

Partial fulfillment of the requirements of the

Degree
Of Doctor Applied Medical Chemistry

 $\mathcal{B}y$

Rashad Ali Abdo Thabet
MSc. Applied Medical Chemistry

Medical Research Institute Alexandria University 2002

Supervisors

Prof. Dr. Shehata Mahmoud EL-Sewedy

Professor of Medical Biochemistry Applied Medical Chemistry Department Medical Research Institute Alexandria University

Prof. Dr. Geylan Ahmed Fadaly

Professor of Pathology Pathology Department Medical Research Institute Alexandria University

Dr. Ashraf Ali Mostafa Hassan

Assist. Professor of Medical Biochemistry
Applied Medical Chemistry Department
Medical Research Institute
Alexandria University

Dr. Gamal Ahmed Amin

Assist. Professor of Internal Medicine Internal Medicine Department Medical Research Institute Alexandria University

Dr. Mohamed Ahmed Abdel-Mohsen

Lecturer of Applied Medical Chemistry
Applied Medical Chemistry Department
Medical Research Institute
Alexandria University

Acknowledgment

Thank to Allah who enabled me completing this thesis.

It is great pleasure to express my deepest gratitude to Prof. Dr. Shehata Mahmoud El-Sewedy. Professor of Medical Biochemistry, Medical Research Institute, Alexandria University. Who patiently devoted much of his precious time and effort to give me helpful advice and excellent supervision, and for his kind encouragement, continuous support and great help for the facilitation of all difficulties to accomplish this work

I would like to express my gratitude and cordial appreciation to Prof. Dr. Geylan Ahmed Fadaly, Professor of Pathology, Medical Research Institute, Alexandria University, for her help guidance in the histopathological and immunohistochemical assessment in this work.

I wish to express my great thanks to Dr. Ashraf Ali Mostafa Hassan, Assistant Professor of Medical Biochemistry. Medical Research Institute, Alexandria University. For his proposing the point of the work; and for his generous cooperation all over the course of this work. I owe to him a great deal of thanks and deepest feelings.

Sincere thanks to Dr. Gamal Ahmed Amin, Assistant Professor of Internal Medicine, Medical Research Institute, Alexandria University. Who was taken the liver biopsies from patients, and supplied the information of all cases.

I am great indebted to Dr. Mohammed Ahmed Abdel-Mohsen, Lecturer of Applied Medical Chemistry, Medical Research Institute. Alexandria University. For his help, encouragement and supervising during the whole work. Without this keen supervision, this work will never have been completed.

I am also deeply indebted to my brother Eng. Abdel-Hakeem Ali Thabet, for his continuous support, encouragement and help. I shall remain very grateful for him

I also thanks to all staff members of Applied Medical Chemistry, Medical Research Institute, Alexandria University, for their kind cooperation during the whole work.

Finally, thanks to the government of Yemen, the faculty of medicine and health science, Sana'a University that support this work.

List of Abbreviations

 AFB_1 Aflatoxin B_1

A:T Adenosine: thymine
ALT Alanine transaminases
AST Aspartate transaminases
ATP Adenosine triphosphate

bDNA Branched deoxyribonucleic acid

C:G Cytosine: guanosine

CDNB 1-chloro-2,4-dinitrobenzene

DAB Di-amino benzidine
DNA Deoxyribonucleic acid

DTNB 5,5'-dithiobis-(2-nitrobenzoic acid)

 E_1, E_2 Envelopes of HCV

EDTA Ethylenediamine tetra acetic acid
ELISA Enzyme linked immunosorbent assay

FAD Flavin adenosine dinucleotide GGT Gamma-glutamyl transferase

Glu-6-p DH Glucose-6-phosphatase dehydrogenase

GSH

GSSG

Oxidized glutathione

GSH-RD

Glutathione reductase

GPx

Glutathione peroxidase

GST

Glutathione S-transferase

GST-pi Glutathione S-transferase-pi class

G₁/S Gap₁/S phase in mitosis G₂/M Gap₂/M phase in mitosis H₂O₂ Hydrogen peroxide

HAI Histological activity index

HBV Hepatitis B virus HCV Hepatitis C virus

HCC Hepatocellular carcinoma

HIV Human immunodeficiency virus

IFN Interferon

IgG Immunoglobulin G

KD Kilodalton

NaCL Sodium chloride

NADP Nicotinamide adenosine dinucleotide

phosphate (oxidized form)

NADPH⁺ Nicotinamide adenosine dinucleotide

phosphate (reduced form)

NaN₃ Sodium azide

NANB Non-A, Non-B hepatitis

NS Non-structural protein of HCV

P53 Phosphoprotein 53
PBA Protein blocking agent
Pbs Phosphate buffer saline
PCR Polymerase chain reaction

PPF Periportal fibrosis

RIBA Recombinant immunoblot assay

RNA Ribonucleic acid

Se Selenium

SV40 Siamin virus 40

SPSS Statistical package for social science

TBS Tris buffer saline
TCA Trichloro acetic acid
TMB Tetramethyl benzidine
WHO World health organization

List of Figures

Figures	T:41	Page
	Title	no.
Figure (1)	Schemic organization of hepatitis C virus genome	8
Figure (2)	Serologic changes associated with hepatitis C virus infection	14
Figure (3)	Schemic diagram of p53 gene structure	24
Figure (4)	Structure of p53 protein	26
Figure (5)	Structure of glutathione	28
Figure (6)	Glutathione metabolism	30
Figure (7)	Oxidation reduction of glutathione	32
Figure (8)	Calibration curve of glutathione S-transferase-pi-class	58
Figure (9)	Positive levels of plasma glutathione S-transferase-pi levels	79
Figure	Correlations among the different biochemical parameters	82-84
(10a - 10f)		97
Figure (11)	A case of Mild chronic active hepatitis	
Figure (12)	A case of chronic active hepatitis without cirrhosis	97
Figure (13)	A case of hepatitis C virus combined with schistosomiasis	98
Figure (14)	A case of chronic active hepatitis (cirrhotic hepatitis)	98
Figure (15)	A case of hepatocellular carcinoma- well differentiated	99
Figure (16)	A case of hepatocellular carcinoma-moderately Differentiated	99
Figure (17)	A case of hepatocellular carcinoma- poorly differentiated	100
Figure (18)	Negative immunohistochemical stain for p53 in a mild chronic active hepatitis	100
Figure (19)	Positive immunohistochemical stain for p53 in a mild chronic active hepatitis	101
Figure (20)	Positive immunohistochemical stain for p53 in chronic active hepatitis,	101
Figure (21)	Negative immunohistochemical stain for p53 in poorly differentiated hepatocellular carcinoma	102
Figure (22)	Immunohistochemical stain for p53 in moderately differentiated hepatocellular carcinoma-weakly positive	102
Figure (23)	Immunohistochemical stain for p53 in moderately differentiated hepatocellular carcinoma- moderately positive	103
Figure (24)	Immunohistochemical stain for p53 in well differentiated hepatocellular carcinoma –strongly positive	103
Figure (25)	Immunohistochemical stain for p53 in moderate differentiated hepatocellular carcinoma-strongly positivity	104
Figure (26)	Hypothetical diagram showing the biochemical changes in the different studied groups	123

List of Tables

Tables	Title	Page
Table (1)	Histological activity index for numerical scoring of liver biopsy	17
Table (2)	Forms of glutathione S-transferase in human liver	41
Table (3)	Demographic characteristics and risk factors in the studied groups	63
Table (4)	Abdominal ultrasonographic evaluation of the three patient groups	66
Table (5)	Statistical analysis of blood hemoglobin level	68
Table (6)	Statistical analysis of serum total bilirubin level	68
Table (7)	Statistical analysis of serum activity of ALT level	70
Table (8)	Statistical analysis of serum activity of AST level	70
Table (9)	Statistical analysis of plasma prothrombin activity	72
Table (10)	Statistical analysis of serum albumin level	72
Table (11)	Statistical analysis of blood glutathione content	74
Table (12)	Statistical analysis of serum γ-glutamyl transferase activity level	74
Table (13)	Statistical analysis of glutathione reductase activity level	76
Table (14)	Statistical analysis of glutathione peroxidase activity level	76
Table (15)	Statistical analysis of serum glutathione S-transferase activity level	78
Table (16)	Statistical analysis of plasma glutathione S-transferase pi- levels	78
Table (17)	Mean levels and positive results of plasma GST-pi-class	79
Table (18)	Statistical correlations among the different biochemical parameters	81
Table (19)	Results of Knodell scoring in patients with chronic hepatitis C virus	86
Table (20)	Histological activity index in patients with pure chronic HCV	87
Table (21)	Histological activity index in patients with chronic Hepatitis C virus and schistosomiasis	88
Table (22)	Histological types of chronic hepatitis C virus patients (gp 2 & gp 3)	92
Table (23)	Association of p53 expression in chronic hepatitis C virus patients	92
Table (24)	Association of p53 expression with histological types of chronic hepatitis C virus patients in group 2 and group 3	93
Table (25)	Semiquantitative evaluation of p53 expression of histological types of chronic hepatitis C virus groups	93
Table (26)	Histological types of hepatocellular carcinoma and the association of p53 expression	94
Table (27)	Semiquantitative evaluation of p53 expression of histological types of hepatocellular carcinoma group	94
Table (28)	Association of p53 expression with biochemical studies	96
I		