سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

TCP Performance Implications for the Current and Future Networking Environment

Ву

Eman EL-Sayed Sanad Mohammed Metwally

A Thesis Submitted to the
Faculty of Computers & Information
Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master Science
in
Information Technology

Under the Supervision of

Prof. Dr. Sanaa El-Ola Hanafi Ahmed

Head of the Information Technology Department
Faculty of Computers and Information
Cairo University

Assoc. Prof. Fathy Ahmed EL-Sayed Amer

Information Technology Department
Faculty of Computers and Information
Cairo University

Faculty of Computers & Information Cairo University- Egypt 2004

> B 10--1

TCP Performance Implications for the Current and Future Networking Environment

By

Eman EL-Sayed Sanad Mohammed Metwally

A Thesis Submitted to the
Faculty of Computers & Information
Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master Science
in
Information Technology

Approved by the Examining Committee

Prof. Dr. Abdel Moneim Abdel Zaher Wahdan, Member

Prof. Dr. Mohammed Gamal El Dein Darweesh, Member

Prof. Dr. Sanaa El Ola Hanafi Ahmed.

Assoc. Prof. Fathy Ahmed El Sayed Amer,

Signature

Savaa Elala

Advisor

Advisor

FACULTY OF COMPUTERS & INFORMATION CAIRO UNIVERSITY - EGYPT

2004

CERTIFICATE

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Any portion of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

Student Name: Eman El-Sayed Sanad Mohammed

Signiture : Eman Sanad.

CONTENTS

	Page
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS AND ABBREVIATIONS	xiii
ACKNOWLEDGEMENT	xiv
ABSTRACT	χV
CHAPTER ONE: INTRODUCTION	1
1.1 Classification of Wireless Networks	2
1.1.1 Classification of Wireless Networks based on Coverage	4
1.1.1.1 Wireless LANs	4
1.1.1.2 Wide Area Wireless Data Networks (WAWDN)	4
1.1.2 Classification of Wireless Networks based on Kind of Services Offered and User Mobility	5
1.1.2.1 Full User Mobility	5
1.1.2.2 Portable wireless data	6
1.1.2.3 Fixed wireless data (Broadband Wireless)	6
1.2 TCP Performance	6
1.3 TCP Types	8
1.4 Problem Considered	9
1.5 Outline of the Thesis	9

CHAPTER TWO: TCP BASICS AND TYPES: AN OVERVIEW	11
2.1 Basics of TCP / IP Protocol	11
2.1.1 Interfaces	12
2.1.2 Operations	13
2.1.2.1 Basic Data Transfer	13
2.1.2.2 Reliability	13
2.1.2.3 Flow Control	14
2.1.2.4 Multiplexing	15
2.1.2.5 Connections	15
2.1.2.6 Precedence and Security	16
2.1.3 Congestion control	. 16
2.2 TCP Types	18
2.2.1 TCP-Tahoe	18
2.2.2 TCP-Reno	20
2.2.3 TCP-NewReno	22
2.2.4 TCP SACK	25
2.2.5 TCP Vegas	28
2.2.5.1 New Retransmission Mechanism	29
2.2.5.2 Congestion Avoidance Mechanism	31
2.2.5.3 Modified Slow-Start Mechanism	32

CHAPTER THREE: TCP IN THE WIRELESS ENVIRONMENT	35
a t TOD D. III	35
3.1 TCP Problems 3.1.1 Limited Bandwidth	36
3.1.2 Long Round Trip Times	36
3.1.3 Random Losses	37
3.1.4 User Mobility	37
3.1.5 Short Flows	38
3.1.6 Power Consumption	39
3.2 The TCP Performance Improvement Schemes	40
3.2.1 Split-Connection Protocol	41
3.2.1.1 Indirect-TCP Protocol	41
3.2.2 End-to-End Protocol	43
3.2.2.1 TCP SACK	43
3.2.2.2 TCP ELN	44
3.2.2.3 TCP Westwood	45
3.2.3 Link-Layer (LL) Protocol	47
3.2.3.1 AIRMAIL Protocol	48
3.2.3.2 Snoop Protocol	48
3.2.3.3 Delayed Duplicate Acknowledgment	51
3.2.4 Multiple Acknowledgment	51
3.2.5 Other Schemes	52
3.2.5.1 Freeze-TCP scheme	52
3.2.5.2 WTCP scheme	53
3.2.5.3 M-TCP scheme	55

3.3 General Comparison of the Different Schemes	57
3.3.1 Split Connection Schemes	57
3.3.1.1 I-TCP Scheme	57
3.3.2 End-to-End schemes	57
3.3.2.1 ELN Scheme	57
3.3.2.2 SACK Scheme	58
3.3.2.3 TCP Westwood	58
3.3.3 Link Layer (LL) schemes	59
3.3.3.1 Snoop Protocol	59
3.3.3.2 Delayed Duplicate Acknowledgment Scheme	59
3.3.3.3 Multiple Acknowledgment scheme	59
3.3.4 Other Schemes	60
3.3.4.1 Freeze-TCP scheme	60
3.3.4.2 WTCP scheme	60
3.3.4.3 M-TCP scheme	60
CHAPTER FOUR: COMPARISON EVALUATION OF TCP TYPES IN	63
WIRELESS NETWORKS	
4.1 Implementation Details	63
4.2 Experimental Methodology	65
4.3 Analysis of Results	67
4.3.1 Comparison of Throughput of TCP Types	67
4.3.1.1 Throughput with Various BERs and Packet Size	68
4.3.1.2 Throughput with Different Transmission Time Intervals	80
4.3.2 Transmitted Packet Sequence Numbers	82

4.3.2.1 High Bit Error Rates	82
4.3.2.2 Low Bit Error Rates	90
4.3.3 Packet Size Variation	94
CHAPTER FIVE: CONCLUSION AND FUTURE WORK	98
5.1 Conclusion	98
5.2 Future Work	99
REFERENCES	101
APPENDEX A	105
NS-2 Scripts	105
An Example of an NS Trace File	113
APPENDEX B	114
Matlab Functions	114

LIST OF TABLES

Table	Subject	Page
Table 2.1 :	Comparison of the Main Features of TCP Types.	34
Table 3.1 :	General Comparison of the Different Schemes.	62
Table 4.1 :	Throughput of TCP types over Wireless with BER=1/64 kB, Packet size=1400 Bytes.	68
Table 4.2 :	Throughput of TCP types over Wireless with BER=1/128 kB, Packet size=1400 Bytes.	69
Table 4.3 :	Throughput of TCP types over Wireless with BER=1/64 kB, Packet size=1000 Bytes.	70
Table 4.4 :	Throughput of TCP types over Wireless with BER=1/128 kB, Packet size=1000 Bytes.	71
Table 4.5 :	Throughput of TCP types over Wireless with BER=1/64 kB, Packet size=500 Bytes.	72
Table 4.6 :	Throughput of TCP types over Wireless with BER=1/128 kB, Packet size=500 Bytes.	73
Table 4.7 :	Throughput of TCP types over Wireless with BER=1/256 kB, Packet size=1400 Bytes.	77
Table 4.8 :	Throughput of TCP types over Wireless with BER=1/256 kB, Packet size=1000 Bytes.	78
Table 4.9 :	Throughput of TCP types over Wireless with BER=1/256 kB, Packet size=500 Bytes.	79
Table 4.10 :	Comparison Evaluation between TCP Types.	97

LIST OF FIGURES

Figure	Subject	Page
Figure 1.1:	Wireless Network	2
Figure 1.2:	Classification of Wireless Networks	3
Figure 1.3:	Wireless Local Area Network (WLAN)	4
Figure 1.4:	Wireless Wide Area Network (WWAN)	5
Figure 2.1:	TCP/IP Model	12
Figure 2.2:	TCP Window Management	15
Figure 2.3:	Congestion Control in TCP	17
Figure 3.1:	A Simple Wired/Wireless (heterogeneous) Network Topology	40
Figure 3.2:	Split-Connection Protocol	41
Figure 3.3:	Indirect-TCP Protocol	42
Figure 3.4:	Bandwidth Estimation in TCP Westwood.	47
Figure 3.5:	Data Processing in Snoop Protocol	49
Figure 3.6:	Acknowledgement Processing in Snoop Protocol	50
Figure 3.7:	Mobile-TCP (M-TCP)	54
Figure 4.1:	Flow Chart of the NS Simulation Scripts	64
Figure 4.2:	Flow Chart of the Matlab Functions	65
Figure 4.3:	The Experimental Network Topology	66
From Figure 4	1.4(a) to 4.4(f):	
	Throughput Comparison of TCP Types over Wireless with different	68 to
	BERs and Packet sizes.	73
From Figure 4	4.5(a) to 4.5(f):	
	Throughput Comparison of TCP Types over Wireless BER=1/256 kB	77 to
	different Packet sizes.	79