PROPAGATION AND SEEDLING PRODUCTION OF SOME EGYPTIAN FLORA

By

AHMED HOSNY ABD EL HAI ABD ALLAH NEGM

B.Sc. Agric. Cooperation Sc., High Institute for Agricultural Cooperation, 2003

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Advanced Agricultural Systems for Arid Lands)

Area Land Agricultural Graduates Studies and Research Institute
Faculty of Agriculture
Ain Shams University

Approval sheet

PROPAGATION AND SEEDLING PRODUCTION OF SOME EGYPTIAN FLORA

By

AHMED HOSNY ABD EL HAI ABD ALLAH NEGM B.Sc. Agric. Cooperation Sc., High Institute for Agricultural Cooperation, 2003

This thesis for M.Sc. degree has been approved by:
Dr. Mamdouh Ahmed Ebrahim El-Shamy
Researcher Prof. of Ornamental Plants and Botanical Garden
Horticulture Research Institute, Agriculture Research Center
Dr. Awaad Mohamed AbdAllah Kandeel
Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants
Faculty of Agriculture, Ain Shams University
Dr. Soheir El-Sayed Mohamed Hassan
Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants
Faculty of Agriculture, Ain Shams University

Date of examination: -- / -- / 2020

PROPAGATION AND SEEDLING PRODUCTION OF SOME EGYPTIAN FLORA

By

AHMED HOSNY ABD EL HAI ABD ALLAH NEGM

B.Sc. Agric. Cooperation Sc., High Institute for Agricultural Cooperation, 2003

Under the Supervision of:

Dr. Soheir El-Sayed Mohamed Hassan

Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohammed Hewidy Mahmoud Ramadan

Lecturer of Ornamental, Medicinal and Aromatic Plants, Horticulture Dept., Faculty of Agriculture, Ain Shams University

ABSTRACT

Ahmed Hossny Abd El-Hay Abd Allah Negm, Propagation and Seedling Production of Some Egyptian Flora. Unpublished M.Sc. Thesis, Department of Area Land Agricultural Graduates Studies and Research Institute, Faculty of Agriculture, Ain Shams University, 2020.

The four experiments were carried out during the period from 2017 till 2019 in the ornamental farm, Department of Horticulture, Faculty of Agriculture, Ain Shams University located at Shoubra -El-kheima, kaliobia governorate, Egypt. The first experiment was performed for seed germination of Doum palm (Hyphaene thebaica Mart) plants for two seasons, the second was for cutting germination of the (Salvadora persica L). plants for two seasons, the third was conducted to study the effect of nitrogen fertilizer sources, known as Toothbrush shrub Or Araak, siwak, miswak on the (Salvadora persica L). plants, the fourth was carried out to study the effect of N:P:K combined fertilizer with a different levels of nitrogen fertilizer. First Experiment seeds of doum palm (Hyphaene thebaica Mart) plants were collected from el obour Market as a source of plant material during two seasons. using 1:1 sand: peat moss (v/v). seeds of doum Palm were treated with different presoaking treatments as follows: control treatment without soaking (direct plantation); soaking in tap water for 48 hours; soaking gibberellic acid solution (GA₃) at 200 ppm for 48 hours; Soaking potassium nitrate solution (KNO₃) 3% for 48 hours; soaking sulfuric acid (H₂SO₄) 28-31% for 15 minutes; soaking in hot water (60°C \pm 5) for 3 hours then left till gradually cooling and freezing storage in deep freezer at -18°C for 12 hours then soaked in hot water at 60°C for 1 hour. Second Experiment: Dipping in IBA at different levels, 0.0; 2000; 4000 and 6000 ppm for 30 sec. The superior treatment was the highest IBA application at 4000 and 6000 ppm. Third experiment: In case of nitrogen fertilizers treatments were used for 12 weeks as follows: Control treatment (without fertilizers); 2 units of

nitrogen from urea per seedling used for 12 weeks; 4 units of nitrogen from Urea per seedling used for 12 weeks; 6 units of nitrogen from urea per seedling used for 12 weeks; 2 units of nitrogen from ammonium sulfate per seedling used for 12 weeks; 4 units of nitrogen from ammonium sulfate per seedling used for 12 weeks and 6 units of nitrogen from ammonium sulfate per seedling used for 12 weeks. The superior treatment was the higher values from the application of urea at 6 units urea per of nitrogen. Following 4 units of nitrogen from ammonium sulfate per seedling used for 12 weeks. Fourth experiment: experiment the treatments were as follows: Control (without fertilization); 2 units of N: P: K 2:1:1(0.49 g/L) plus ammonium sulfate at 0.4 g/L water for each seedling; 4 units of N: P: K 4:2:2 (0.89 g/L) plus ammonium sulfate at 0.8 g/L water for each seedling and 6 units of N: P: K 6:3:3(1.29 g/L) plus ammonium sulfate at 1.2 g/l water for each seedling. The superior treatment was the higher values from the application the highest was obtained from NPK at 6:3:3(1.29 g/L) Following 4:2:2 (0.89 g/L) plus ammonium sulfate the aim of this study was to produce high quality strong seedlings during a relatively short period from doum palm (Hyphaene thebaica) plants and (Salvadora persica L). capable to tolerate harsh and damaging conditions after planting in the permanent locations, especially when it is used for sand dune fixation.

Key words: *Hyphaene thebaica* - *Salvadora persica* L. - seed germination - freezing - tap water soaking- gibberellic acid (GA₃) - sulfuric acid (H₂SO₄)- potassium nitrate (KNO₃)- hot water- cuttings- seedlings.

ACKNOWLEDGEMENTS

First of all, deepest, greatest and most sincere thanks are always extended to "ALLAH" the most merciful and clement God.

Secondly, I would like to express my sincere gratitude to my supervisor Prof. Dr. **Soheir El-Said Mohamed Hassan** for his constant support and encouragement during my master's degree program. This work would not have been possible without his guidance. It was an honor and a privilege to be a part of his research group.

Next, I want to thank Dr. **Mohammed Hewidy** for his support and help in completing this thesis. I would like to admit to the fact that his contribution was extremely helpful in teaching me basics of scientific research. He also assisted in collecting a lot of experimental data, field work and statistical analyses.

Also, I would never forget support of Dr. Fawzy Fawzy Lashin Arafa as a supervisor for the survey part in this thesis.

I will take this opportunity also to thank Dr. Wafaa Mahros Amer, Dr. Abd El Moniem Al-Henawy, Dr. Ezzat Ghonim, Dr. Mahmoud Rabea, Prof. Dr. Maha Farouk Mohamed Ismaiel, Dr. Ramadan Mohamed Moahmed Sayed, Dr. Sheirif Fathy Al-Sharbasy, Dr. Manal Moubarak and Dr. Sayed Shaaban for their kind help in this research, were so fruitful in the result of this work.

Moreover, I would like to offer my deepest thanks and gratitude to all my colleagues and friends everywhere.

Last but not least, my deepest gratitude is offered to my family especially my father and my mother for all the care and moral support provided by them. This work could not have been concluded with high success without their patience and understanding.

CONTENT

	Page
	No.
1.INTRODUCTION	1
2. REVIEW OF LITERATURE	8
2.1. Propagation by seeds	8
2.1.1. Soaking in water treatment	8
2.1.2. Hot water treatment	9
2.1.3. Mechanical Scarification treatment	10
2.1.4. Chemical treatments	11
2.1.5. Dry Heat Treatments	13
2.1.6. Freezing treatment (cold treatment)	14
2.2 Propagation by Cuttings	15
2.2.1. Effect of cutting position on the shoot	15
2.2.2. Effect of indole butyric acid (IBA levels)	16
2.3. Fertilization Effect on growth of young seedling	18
2.3.1. Traditional sources	18
2.3.2. NPK compound fertilizers sources	21
2.3.2. Effect of Nitrogen source on chemical content of leaves	25
2.3.2.1. Traditional source (urea and Ammonium sulfate)	25
2.3.2.2. NPK compound fertilizer sources	27
2.3.2.3.Chemical constituent	27
3. MATERIALS AND METHODS	32
3.1. First Experiment	32
3.1.1. Plant Material	32
3.1.2. Media used and preparation	32
3.1.3. Seed treatments	32
3.1.4. Sowing date and farming procedure	33
3.1.5. Data Recorded and Statistical analysis	33
3.2. Second Experiment: Effect of IBA concentration on	
rooting of the Salvadora persica L.	34
3.2.1. Plant material	34

3.2.2. Media used and preparation	34
3.2.3. Hormone application treatments	34
3.2.4. planting date and culture procedure34	34
3.2.5. Data recorded and Statistical analysis	35
3.2.6.Chemical analysis	35
3.2.7. Experimental Design and Statistical Analysis	36
3.3. Third Experiment	36
3.3.1. Plant Material	36
3.3.2. Media and Preparation	36
3.3.3. Fertilization treatments	37
3.3.4. Data records and Statistical analysis	37
3.3.5.Chemical analysis	38
3.4. Fourth experiment	38
3.4.1. Sowing data and farming procedures	39
3.4.2. Data Records and Statistical Analysis	39
3.4.3.Chemical analysis	40
4. Results	41
4.1. Effect of different Seed Priming on Germination of Doum	
Palm (Hyphaene thebaica Mart)	41
4.1.1. Germination percentage	41
4.1.2. Root length	41
4.1.3. Root diameter	42
4.1.4. Root fresh weight	43
4.1.5. Root dry weight	44
4.1.6. Plant height (seedling L)	45
4.1.7. Leaf wide	46
4.1.8. Leaf area (Length of Leaves Cm ²)	47
4.1.9. Fresh weight of above ground part	48
4.2. Effect of indole butyric acid (IBA) concentrations on	
rooting of Salvadora persica/ cuttings.	49
4.2.1. Number of roots / cuttings.	49
4.2.2. Root length / cuttings.	49