

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

STRENGTHENING OF RC FLAT SLABS WITH CUTOUT OPENINGS

By

ESLAM HATEM MAHMOUD EL-MAWSLY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

STRENGTHENING OF RC FLAT SLABS WITH CUTOUT OPENINGS

By ESLAM HATEM MAHMOUD EL-MAWSLY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Hany Ahmed Abdalla

Professor of Concrete Structures
Structural Engineering Dept.
Faculty of Engineering, Cairo University

Dr. Ashraf Adel Shawky

Assistant Professor
Structural Engineering Dept.

Faculty of Engineering. Cairo University

Dr. Khaled Farouk Omar El-Kashif

Assistant Professor

Structural Engineering Dept. Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

STRENGTHENING OF RC FLAT SLABS WITH CUTOUT OPENINGS

By ESLAM HATEM MAHMOUD EL-MAWSLY

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Hany Ahmed Abdalla,

Thesis Main Advisor

Dr. Ashraf/Adel Shawky.

Advisor

Dr. Khaled Farouk El-Kashif.

Advisor

Prof. Dr. Akram Mohamed Torkey, Internal Examiner

Prof. Dr. Ayman Ahmed Shahin,

External Examiner

Professor of Concrete Structures, Fayoum University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Eslam Hatem Mahmoud El-Mawsly

Date of Birth: 4th February 1993

Nationality: Egyptian

E-mail: Eslam thunder@live.com

Phone: 01064300943

Address: Haye El-Gma'a St., Mansoura, Egypt.

Registration Date: 1 / 3 / 2016 **Awarding Date:** .../ .../ 2020

Degree: Master of Science **Department:** Structural Engineering

Prof. Dr. Hany Ahmed Abdalla

Dr. Ashraf Adel Shawky

Dr. Khaled Farouk Omar El-kashif

Examiners:

Prof. Dr. Hany Ahmed Abdalla (Thesis main advisor)

Dr. Ashraf Adel Shawky
Dr. Khaled Farouk El-kashif
(Advisor)

Prof. Dr. Akram Mohamed Torkey (Internal examiner)

Prof. Dr. Ayman Ahmed Shahin (External examiner - Fayoum University)

Title of Thesis:

"STRENGTHENING OF RC FLAT SLABS WITH CUTOUT OPENINGS"

Key Words:

RC slab strengthening, central cutout, steel strips, CFRP, ECC.

Summary:

Cutouts in existing concrete slabs significantly decrease their capacity. Therefore, strengthening the cutouts is a necessity. In this research, four methods of strengthening flat slabs with central cutout openings are studied. These methods include near-surface mounted (NSM) reinforcing bars, anchored steel strips, epoxy bonded Carbon Fiber Reinforced Polymer (CFRP) strips, and an overlay of Engineered Cementitious Composite (ECC) material reinforced with a welded wire mesh. The dimensions of all slab specimens are $1100 \times 1100 \times 100$ mm, and those of central cutout openings are 300×300 mm. In addition, a numerical analysis using finite element method (FEM) is carried out to validate the experimental results. The results show that the methods of strengthening used in this research lead to significant increase in the slab load-carrying capacity. The strengthening technique using ECC is the most effective approach.

Disclaimer

I hereby declare that this thesis is my own original work, and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name:	Eslam Hatem	Mahmoud El-Mawsly	Date: .	//2020
-------	-------------	-------------------	---------	--------

Signature:

Acknowledgments

First and foremost, my highest thanks and gratitude are unto ALLAH, Almighty, the Ever Generous, the Most Merciful Who helped me ever to complete my work. My sincere appreciations are to my family, namely my Mom and Dad, who have sacrificed a lot that I would not have achieved my goal without their help and support.

The study and the development of this thesis were conducted under the supervision of Prof. Dr. Hany Abdalla, Dr. Ashraf Shawky, Dr. Khaled El-Kashef, from the Department of Structural Engineering, Faculty of Engineering at Cairo University, with whom I have the pleasure of working. I would like to express my deepest appreciation for their generous assistance, continuous encouragement and helpful advice at all stages of this study.

The experimental part of this study was carried out at the laboratory of reinforced concrete tests, Faculty of Engineering at Cairo University. Special thanks to all technicians and staff members of the laboratory for their assistance during the conduct of this research work.

I gratefully acknowledge the help given by many of my colleagues and practicing structural engineers who made constructive and critical comments on the content, and their helpful suggestions for its improvements.

Eslam El-Mawsly

Table of Contents

DISCL	AIMER	I
ACKNO	OWLEDGMENTS	II
TABLE	OF CONTENTS	III
LIST O	F TABLES	VI
	F FIGURES	
	F ABBREVIATIONS AND SYMBOLS	
-	ACT	
1.1	TER (1): INTRODUCTION General Background	
1.1	Scope and Objective	
1.3	Methodology	
1.4	Thesis Outline	
2.1	TER (2): LITERATURE REVIEW Introduction.	
2.1	Effect of cutouts on slabs	
2.2.		
2.3		
2.3.		
	2 Disadvantages of steel plate strengthening	
2.4		
2.4.		
2.4.		
2.5	Properties of ECC material	
2.6	Previous experimental and theoretical researches	14
СНАРТ	TER (3): EXPERIMENTAL INVESTIGATION	21
3.1	Introduction.	
3.2	Reinforced concrete materials	21
3.2.	1 Steel reinforcement	21
3.2.	.2 Coarse aggregate	22
3.2.	3 Fine aggregate	22
3.2.	.4 Mixing water	22
3.2.	.5 Cement	22
3.3	Concrete mix	22
3.4	Casting and compaction	24
3.5	Curing	24
3.6	Testing of fresh concrete	
3.7	Compressive strength of hardened concrete	
3.8	Strengthening materials	
3.8.		
3.8.	2 Saturants (Epoxy)	26

3.8.3	Sika Fiber	28
3.8.4	Sika Fly Ash	28
3.8.5	Sika ViscoCrete-3425	28
3.9 Me	asurement tools	29
3.9.1	Deflection measurements	29
3.9.2	Strain measurements	29
3.10 Tes	st program	30
3.11 Co	nfigurations of the tested specimens	31
3.11.1	Schematic detailing of the Specimens	31
3.11.2	Specimen S1 (S1-NO-R)	33
3.11.3	Specimen S2 (S2-WO-C)	34
3.11.4	Specimen S3 (S3-WO-SR)	35
3.11.5	Specimen S4 (S4-WO-SS)	36
3.11.6	Specimen S5 (S5-WO-CFRP)	37
3.11.7	Specimen S6 (S6-WO-ECC)	38
3.12 Spe	ecimens placing and casting	39
3.12.1	Details of the specimen (S1)	39
3.12.2	Details of the specimen (S2)	40
3.12.3	Details of the specimen (S3)	41
3.12.4	Details of the specimen (S4)	43
3.12.5	Details of the specimen (S5)	47
3.12.6	Details of the specimen (S6)	50
3.13 Tes	st setup	55
	•	
CHAPTER	(4): EXPERIMENTAL RESULTS	58
CHAPTER 4.1 Intr	(4): EXPERIMENTAL RESULTS	58
CHAPTER 4.1 Intr	(4): EXPERIMENTAL RESULTS roduction perimental test results	58 58
CHAPTER 4.1 Intr 4.2 Exp	(4): EXPERIMENTAL RESULTS	58 58 58
CHAPTER 4.1 Into 4.2 Exp 4.2.1	(4): EXPERIMENTAL RESULTS	58 58 58 58
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2	(4): EXPERIMENTAL RESULTS roduction. perimental test results. Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR	58 58 58 62 65
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3	(4): EXPERIMENTAL RESULTS roduction. Specimental test results. Specimen S1-NO-R. Specimen S2-WO-C. Specimen S3-WO-SR. Specimen S4-WO-SS.	5858586265
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4	(4): EXPERIMENTAL RESULTS roduction. perimental test results. Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR	58 58 58 62 65 65
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	(4): EXPERIMENTAL RESULTS roduction. Specimental test results. Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR Specimen S4-WO-SS Specimen S5-WO-CFRP Specimen S6-WO-ECC	58585862656571
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	(4): EXPERIMENTAL RESULTS oduction. perimental test results. Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR Specimen S4-WO-SS Specimen S5-WO-CFRP	5858586265657175
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis	(4): EXPERIMENTAL RESULTS coduction. Specimental test results. Specimen S1-NO-R. Specimen S2-WO-C. Specimen S3-WO-SR. Specimen S4-WO-SS Specimen S5-WO-CFRP. Specimen S6-WO-ECC. cussion of experimental results.	5858586265717578
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1	(4): EXPERIMENTAL RESULTS oduction. perimental test results. Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR Specimen S4-WO-SS Specimen S5-WO-CFRP Specimen S6-WO-ECC cussion of experimental results Introduction	585858626565717578
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2	(4): EXPERIMENTAL RESULTS roduction. Specimental test results. Specimen S1-NO-R. Specimen S2-WO-C. Specimen S3-WO-SR. Specimen S4-WO-SS Specimen S5-WO-CFRP. Specimen S6-WO-ECC. cussion of experimental results. Introduction. Comparison of deflection for tested slab specimens.	585858626571757878
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3	(4): EXPERIMENTAL RESULTS oduction Specimental test results Specimen S1-NO-R Specimen S2-WO-C Specimen S3-WO-SR Specimen S4-WO-SS Specimen S5-WO-CFRP Specimen S6-WO-ECC cussion of experimental results Introduction Comparison of deflection for tested slab specimens Comparison of strains for tested slab specimens	5858586265657175787878
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3 4.3.4	(4): EXPERIMENTAL RESULTS coduction. Specimental test results. Specimen S1-NO-R. Specimen S2-WO-C. Specimen S3-WO-SR. Specimen S4-WO-SS Specimen S5-WO-CFRP. Specimen S6-WO-ECC. cussion of experimental results. Introduction. Comparison of deflection for tested slab specimens. Cracking and failure loads for tested slab specimens.	5858586265717578787896
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	(4): EXPERIMENTAL RESULTS	585858626571757878789596
CHAPTER 4.1 Into 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	(4): EXPERIMENTAL RESULTS	58585862656571757878789596
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 Cos	(4): EXPERIMENTAL RESULTS	58585862657175787878789599
CHAPTER 4.1 Intr 4.2 Exp 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 Dis 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 Cos 4.4.1	(4): EXPERIMENTAL RESULTS	

4.5	Co	st-effectiveness comparisons of strengthening materials	100	
CHAP	ΓER	(5): NUMERICAL ANALYSIS	103	
5.1		oduction		
5.2	Simplified analytical method		103	
5.3	Det	Details on the numerical simulation process		
5.4	Mo	deling of materials	106	
5.4	.1	Concrete	106	
5.4	.2	Reinforcing steel	111	
5.4	.3	CFRP	111	
5.5	Ge	ometric modeling technique	111	
5.5	.1	Reference slab model with and without central opening (S-NO	-R) &	
		(S-WO-R)	111	
5.5	.2	Strengthened slabs model (S3-WO-SR) & (S4-WO-SS) & (S5	-WO-	
		CFRP) & (S6-WO-ECC)	117	
5.6	Dis	cussion of computational results and comparison with experime	ents119	
5.6	.1	Visualization of slabs in deflection	120	
5.6	.2	Visualization of slabs in plastic strain	125	
CHAP	ΓER	(6): SUMMARY & CONCLUSION	128	
6.1		oduction		
6.2	Ge	neral Conclusions	128	
6.3	Red	commendations for future research works	129	
REFER	REN	CES	130	

List of Tables

Table (2-1): Mechanical properties of regular fibers, [18]	12
Table (2-2): Mechanical properties of matrix substances, [18]	12
Table (2-3): Major physical properties of ECC, [27]	14
Table (2-4): ECC mix design proportion by weight for ECC-M45, [28]	
Table (2-5): Test matrix details and strengthening techniques, [35]	
Table (3-1): Mechanical Properties of Steel Bars	21
Table (3-2): Weights of One Cubic Meter of Concrete	23
Table (3-3): Typical physical properties of the Carbon Fiber sheet	25
Table (3-4): Saturant Sikadur®-330 specifications	26
Table (3-5): Saturant Sikadur®-31 CF specifications	
Table (3-6): Saturant Sikadur®-32 specifications	
Table (3-7): Fiber specifications	
Table (3-8): Fly ash specifications	
Table (3-9): Superplasticizer ViscoCrete ® -3425 specifications	28
Table (3-10): Strain gauge specifications	
Table (3-11): Program details for tested slabs	
Table (3-12): Components and weights of ECC material	
Table (4-1): Failure and cracking loads for test specimens	95
Table (4-2): Ductility of slab specimens using ductility factor	96
Table (4-3): Ductility of slab specimens using the area method	
Table (4-4): Stiffness degradation of specimens	98
Table (4-5): The Cost of Strengthening Materials for the Steel bars Technique	
Table (4-6): The Cost of Strengthening Materials for the Steel strips Technique	99
Table (4-7): The Cost of Strengthening Materials for the CFRP Technique	100
Table (4-8): The Cost of Strengthening Materials for the reinforced ECC Technique	
Table (4-9): Increase in Capacity per Unit Cost of strengthening materials	
Table (4-10): Cost per Unit Increase in Capacity for strengthening materials	
Table (5-1): The material parameters of the CDP model for concrete class C50	110
Table (5-2): steel material properties	
Table (5-3): CFRP material properties	
1 1	

List of Figures

Figure (1-1): The Research method.	2
Figure (2-1): Openings in flat slabs, PCA guide [2]	1
Figure (2-2): Specific requirements of openings in flat slabs in the American code	7
(ACI 318-14) and Canadian code [3, 4]	6
Figure (2-3): Specific requirements of openings in flat slabs, British Code BS8110	U
[5]	7
Figure (2-4): Specific requirements of openings in flat slabs, Egyptian code	1
ECP2018 [6]	Q
Figure (2-5): Strengthening configuration with steel plates, [13]	
Figure (2-5): Strengthening configuration with steel plates, [13]	
Figure (2-7): Strengthening with CFRP sheets around the opening, [16]	
Figure (2-8): Uniaxial tensile stress-deformation relation of concrete, FRC, and	1
HPFRCC, [24]	2
Figure (2-9): Plan and side view of dimension and RFT details of the slab, [29]1:	
Figure (2-10): Different method of strengthening and loading, [30]	
Figure (2-10): Slabs strengthened with CFRP near columns, [33]	
Figure (2-12): Plan and cross-section details of tested slabs, [35]	
Figure (2-13): Plan and side view of tested slabs' details, [36]	
Figure (2-14): Load test on concrete slabs with and without cutouts, [37]20	U
Figure (3-1): Details of the lower reinforcement steel mesh22	2
Figure (3-2): Concrete mixing in a batch drum mixer	
Figure (3-3): Materials' components of concrete and ECC	
Figure (3-4): Wood molds	
Figure (3-5): Casting and Compaction of Concrete Mix24	
Figure (3-6): a) Pouring concrete mix in cubes and cylinders, b) Compressive load	
test	
Figure (3-7): Carbon Fiber sheet	6
Figure (3-8): Different types of saturants (Epoxy)	7
Figure (3-9): Linear Voltage Displacement Transducer (LVDT)29	
Figure (3-10): a) 10mm Strain gauge for steel, b) 60mm Strain gauge for concrete 30	
Figure (3-11): Dimensions of grid and base in Strain gauges	
Figure (3-12): Terminology specification	
Figure (3-13): Schematic Reinforcement of the Specimens: (a) S1 and (b) S232	
Figure (3-14): Schematic strengthening techniques of the Specimens:	
Figure (3-15): Plan and section elevation of the reinforcement detailing and	
dimensions for S1	4
Figure (3-16): Plan and section elevation of the reinforcement detailing and	
dimensions for S2	5
Figure (3-17): Plan and section elevation of the reinforcement detailing, steel bars	
strengthening, and dimensions for S3	6
Figure (3-18): Plan and section elevation of the reinforcement detailing, steel strips	
strengthening, and dimensions for S4	
Figure (3-19): Plan and section elevation of the reinforcement detailing, CFRP	
strengthening, and dimensions for S5	8
Figure (3-20): Plan and section elevation of the reinforcement detailing, ECC	
strengthening, and dimensions for S6	9

Figure (3-21): Reinforcement detailing inside wood forms before the concrete	
casting of (S1)	
Figure (3-22): Concrete placed inside forms of (S1)	40
Figure (3-23): Reinforcement detailing inside wood forms before casting of conc	crete
of (S2)	41
Figure (3-24): Concrete casting and compaction of (S2)	41
Figure (3-25): Reinforcement detailing with two foam grooves inside wood forms	S
before casting of concrete of (S3)	42
Figure (3-26): Steps of strengthening of (S3) with additional reinforcement steel	
Figure (3-27): Reinforcement detailing with two steel strips inside wood forms	
before casting of concrete of (S4)	44
Figure (3-28): Steel strip specimen deformation in the tensile test	
Figure (3-29): Steel Bolt failure at the shear test	
Figure (3-30): Steps of strengthening of (S4) with EB steel strips	
Figure (3-31): Reinforcement detailing inside wood forms before casting of concr	
of (S5)	
Figure (3-32): Steps of strengthening of (S5) with EB-CFRP	
Figure (3-33): Reinforcement detailing with 2 cm foam replacing the concrete co	
inside wood forms before casting of concrete of (S4)	
Figure (3-34): Steps of strengthening of (S6) with ECC with a welded wire mesh.	
Figure (3-35): Experimental program: Two reference slabs + four different	
strengthening arrangements due to a sawn-up opening	55
Figure (3-36): Wooden blocks configuration on slabs	
Figure (3-37): Final setup for slab test	
Figure (3-38): Measurement gauges: a) glued 10 mm SG for the steel reinforcem	
b) glued 60 mm SG for the concrete, c) LVDT	
Figure (3-39): The position of instruments on slabs	
Figure (4-1): Failure and crack propagation for slab (S1)	59
Figure (4-2): Position of LVDTs on the slab	60
Figure (4-3): Load deflection curves for slab (S1)	60
Figure (4-4): Position of strain gauges on the slab	61
Figure (4-5): Load strain relationship for slab (S1) in steel bars	61
Figure (4-6): Load strain relationship for slab (S1) in concrete	61
Figure (4-7): Failure and crack propagation for slab (S2)	63
Figure (4-8): Load deflection curves for slab (S2)	64
Figure (4-9): Load strain relationship for slab (S2) in steel bars	64
Figure (4-10): Load strain relationship for slab (S2) in concrete	
Figure (4-11): Failure and crack propagation for slab (S3)	66
Figure (4-12): Load deflection curves for slab (S3)	67
Figure (4-13): Load strain relationship for slab (S3) in steel bars	67
Figure (4-14): Load strain relationship for slab (S3) in concrete	
Figure (4-15): Failure and crack propagation for slab (S4)	69
Figure (4-16): Load deflection curves for slab (S4)	
Figure (4-17): Load strain relationship for slab (S4) in steel bars	70
Figure (4-18): Load strain relationship for slab (S4) in concrete	71
Figure (4-19): Failure and crack propagation for slab (S5)	
Figure (4-20): Load deflection curves for slab (S5)	
Figure (4-21): Load strain relationship for slab (S5) in steel bars steel bars	
Figure (4-22): Load strain relationship for slab (S5) in concrete	
Figure (4-23): Failure and crack propagation for slab (S6)	76