

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

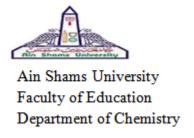
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Production and Characterization of Nanomaterials based on alkaline-earth stannate for different potential Applications"

A Thesis submitted

 $\mathbf{B}\mathbf{v}$

Zynab Abd ELhamed Abd Elraoof Goubish

B.Sc.Ed.2005; MSc. 2011

In partial fulfillment for

Requirements of Doctor of philosophy Degree for Teacher's Preparation in Science

(Inorganic Chemistry)

Under the Supervisors

Prof. Dr. Maged Abdeltawab El- Kemary

Prof .Dr. Mona Mostafa Ali

Prof .Dr. Hoda Saied Hafez

Ass. Prof. Dr. Hala Rashad Ahmed

Dr. Raghda Kamal

Ain Shams University

Cairo, A.R. Egypt

2021

"Production and Characterization of Nanomaterials based on alkaline-earth stannate for different potential Applications"

Thesis submitted

By

Zynab Abd ELhamed Abd Elraoof Goubish

M.D 2011

The Degree of Ph.D for the Teacher's Preparation in Science
(Inorganic Chemistry)

To Chemistry Department Faculty of Education Ain Shams University

Cairo, Egypt

2020

"Production and Characterization of Nanomaterials based on alkaline-earth stannate for different potential Applications"

$\mathbf{B}\mathbf{v}$

Zynab Abd ELhamed Abd Elraoof Goubish

Under the Supervision

Prof. Dr. Maged Abdeltawab El- Kemary

Prof. of Photochemistry and nanotechnology, Insitute Science and nanotechnology, Kafrelsheikh University

Dr. Mona Mostafa Ali

Prof. of inorganic chemistry, Faculty of Education, Ain Shams University

Dr. Hoda Saied Hafez

Prof. of chemistry, Environmental Studies and Research Institute "ESRI", Sadat University.

Dr. Hala Rashad Ahmed

Ass. Prof. of physical chemistry, Faculty of Education, Ain Shams University

Dr. Raghda Kamal

Lecturer of physical chemistry, Faculty of Education, Ain Shams University

Approval Sheet

Name of candidate: Zaynab Abd ELhamed Abd Elraoof Ghubish Degree: Ph.D. Sc. Degree for the Teacher's Preparation in Science (Inorganic Chemistry) Thesis Title: "Production and Characterization of Nanomaterials based on alkaline-earth stannate for different potential Applications" This Thesis has been approved by **Approval** Prof. Dr. Maged Abdeltawab El- Kemary Prof. of photochemistry and nanotechnology, Insitute Science and nanotechnology, Kafrelsheikh University Dr. Mona Mostafa Ali Prof. of inorganic chemistry, Faculty of Education, Ain Shams University Dr. Hoda Saied Hafez Prof. of chemistry, Environmental Studies and Research Institute "ESRI", Sadat University. Dr. Hala Rashad Ahmed Ass. Prof. of physical chemistry, Faculty of Education, Ain Shams University Dr. Raghda Kamal Lecturer of physical chemistry, Faculty of Education, Ain Shams University

Title Sheet

Name of candidate: Zaynab Abd ELhamed Abd Elraoof Ghubish

Date of Birth: 9/1/1984

Place of Birth: Kafrelsheikh

Highest University Degree: Maste. Sc. & Ed., 2011

Name of University: for Kafrelsheikh

ACKNOWLEDGEMENT

First of all, my deepest thanks to Allah because my god is Allah.

- It is my pleasure to express my sincere gratitude to *Prof.* Dr. Maged. A. El-Kemary Prof. of Photochemistry and nanotechnology, Insitute Science and nanotechnology, Kafrelsheikh University and Dr.Mona Mostafa Ali, Prof. of Inorganic Chemistry for his assistance, encouragement help during this work, suggesting the present line of work, his kind supervision the work, valuable discussion reversing
- I would like to thank Dr. Hoda Saied Hafez, Dr. Hala Rashad Ahmed and Dr. Raghda Kamal for his helping, suggesting the present line of work encouraging and give me confidence.

the thesis and putting it in the final form.

- I wish to thank my father, my mother, my brother and my sisters, for helping me in all my life.
- My deepest gratitude to all colleagues and staff members of Chemistry and physics Department

Zayanb abd elhamed

Abbreviation

CTAB Cetyl Trimethyl Ammonium Bromide

FT-IR Fourier transform infrared spectroscopy

Ln³⁺ Lanthanide ions

PL Photoluminescence

Eu³⁺ Europium

SrSnO₃ Strontium stannetes

SEM Scanning Electron Microscope

TEM Transition Electron Microscope

APTS 3 Aminopropyltriethylsilane

CaSn(OH)₆ Calcium hydroxy stannate

Ksv The Stern–Volmer quenching constant

CT Charge transfer

Vis. Visible

AIM OF THE WORK

Alkaline earth stannate and Alkaline hydroxy stannate with a perovskite structure have long been of theoretical and practical interest due to its attractive luminescence and photocatalytics. This nanomaterial was preparaed with doping Europium ion exhibit unique properties including lower chemical toxicity, lack of radioactive elements, greater thermal and chemical stability, owing to this advantages, nano-phosphor based on Europium doped metal-stannate and metal-hydroxy stannate have a new high photoluminescent properties for different applications such as heavy metal sensor and latent finger print. Also silver nanoparticle coated metal –stannate are used as precursor material and development for water treatment such as degradation methylene blue and reduction nitrophenol.

CONTENTS

	Acknowledgement	V			
	Abbreviation	VI			
	Aim of the work	VII			
	List of contents	VIII			
	List of table	VIII			
	List of figures	XV			
Chapter I					
General Introduction and literature Survey					
1.1	Nanotechnology	2			
1.2	Lanthanide nanomaterials	3			
1.2.1	General properties	3			
1.2.2	Basics of lanthanide metal ion luminescence	4			
1.2.2.1	Excition source for lanthanide ion	4			
1.2.2.2	Energy transfer mechanism	6			
1.2.2.3	Lanthanides luminescence spectroscopy	6			

1.2.2.4	Types of lanthanide sensitizers (antennas)	8
1.2.2.4.1	Organic antennas	8
1.2.2.4.2	Inorganic antennas	8
1.2.2.4.2.1	Lanthanide doped Alkaline earth stannate (MSnO ₃)	9
1.2.3	Judd-Ofelt and radiative analysis	12
1.2.4	Application lanthanide doped alkaline earth stannates	14
1.2.4.1	Lanthanide based nanomaterial for latent fingerprint detection application	14
1.2.4.1.1	Method of Latent Fingerprint Development	15
1.2.4.1.1.1	Traditional Fingerprint Powders	15
1.2.4.1.1.2	Luminescence Methods for Latent Print Enhancement	15
1.2.4.2	Lanthanide based nanomaterials for heavy metal sensor application	17
1.2.4.2.1	Copper ion sensor	18
1.3	Alkaline earth stannates nanomaterial for wastewater treatment	20
1.3.1	Removal of organic dyes	20
1.3.2	Reduction of nitroaromatics to aminoaromatics:	23

	Chanton II	25	
Chapter II			
	Experimental		
2.1	Reagents and materials	26	
2.2	Preparation methods	26	
2.2.1	Preparation SrSnO ₃	26	
2.2.1.1	Preparation Ag doped SrSnO ₃	27	
2.2.2	Synthesis of CaSn(OH) ₆ and CaSn(OH)6:Eu ³⁺	27	
2.2.3	Preparation of SrSnO ₃ and SrSnO ₃ :Eu ³⁺	28	
2.2.4	Preparation of SrSnO ₃ : Eu ³⁺ @APTS	30	
2.2.5	Sample preparation for metal ion sensing	31	
2.2.6	Sample preparation in food sample	31	
2.3	Fingerprint Development	31	
2.4	Photocatalytic experiment	33	
2.4.1	Photocatalytic reduction of 4-NP	33	
2.4.2	Photocatalytic meniralization of MB	33	
2.5	Characterization Techniques	34	
2.5.1	X-Ray diffraction Analysis	34	
2.5.2	Thermal gravimetric analysis	35	
2. 4. 3.	Zeta Potential (Brookhaven)	36	
	(V)		

2.4.4	Transmission electron microscopy (TEM)	37
2.4.5	Photoluminescence (PL) analysis	38
2.4.6	Fourier Transform-Infrared Spectrometer (FT-IR-4100-JASCO)	39
2.4.7	UV-Visible/diffuse reflectance	40
2.4.8	Scan electron microscopy (SEM)	40
2.4.9	Total Organic Carbon	41
	Chapter III	42
Novel Red Photoluminescence Sensor based on Alkaline Earth stannates doped europium ion CaSn(OH) ₆ :Eu ³⁺ for Latent Fingerprint Detection		
	Abstract	43
3	Results and Discussion	44
3.1	Structure and morphology	44
3.1.1	XRD	44
3.1.2	FT-IR	47
3.1.3	Morphology (TEM, SEM, and EDX)	48
3.2	Optical and Photoluminescence properties:	51
3.2.1	Reflectance	51
3.2.2	Photoluminescence (PL) study	53