

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

DESIGNING OF FUZZY LOGIC BASED COMPUTED TORQUE CONTROLLERS FOR 6 DEGREE OF FREEDOM ROBOTIC MANIPULATOR

By

Asmaa Mohamed Abd El-Star

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

DESIGNING OF FUZZY LOGIC BASED COMPUTED TORQUE CONTROLLERS FOR 6 DEGREE OF FREEDOM ROBOTIC MANIPULATOR

By Asmaa Mohamed Abd El-Star

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Assistant Prof.

Ahmed Mohamed Kamel Ahmed Abd El-Nasser
Lasheen

Prof. of Electrical Power and Machines
Engineering Dept.
Faculty of Engineering, Cairo University

Assistant Prof. of Electrical Power and Machines Engineering Dept. Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

DESIGNING OF FUZZY LOGIC BASED COMPUTED TORQUE CONTROLLERS FOR 6 DEGREE OF FREEDOM ROBOTIC MANIPULATOR

By Asmaa Mohamed Abd El-star

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the	
Examining Committee	
Prof. Dr. Ahmed Mohamed Ah	 amed Kamel, Thesis Main Advisor
Assistant Prof. Mohamed Shav	vky Mohamed, Internal Examiner
Prof. Dr. Ahmed Mohamed El Prof. in Helwan University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Asmaa Mohamed Abd El-star said

Date of Birth: 25 / 7 / 1989 **Nationality:** Egyptian

E-mail: asmaaabdelstar3@gmail.com

 Phone:
 01008295663

 Address:
 6-October

 Registration Date:
 1 / 10 / 2014

 Awarding Date:
/..../2020

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Ahmed Mohamed Ahmed Kamel Dr. Ahmed Abd El-Nasser Lasheen

Examiners:

Prof. Ahmed Mohamed El-Garhy (External examiner) Prof. in Faculty of Engineering – Helwan University

Associate Prof. Mohamed Shawky Mohamed (Internal examiner) Prof. Ahmed Mohamed Ahmed Kamel (Thesis main advisor)

Title of Thesis:

DESIGNING OF FUZZY LOGIC BASED COMPUTED TORQUE CONTROLLERS FOR 6 DEGREE OF FREEDOM ROBOTIC MANIPULATOR

Key Words:

Robotic manipulators; Computed torque control; Fuzzy control

Summary:

Three different control strategies have been developed to control the 6-degree of freedom. Robot manipulator such that it can track the required trajectories. The first is based on the feedback linearization of the manipulator and controller via using a nonlinear control law. This is called a computed-torque-controller (CTC). The second is a Fuzzy controller. The third is a hybrid controller from the first and the second ones. The developed controllers are tested in different cases of uncertainties in the nonlinearity of the manipulator. The third

controller has proved its superiority over the other two controllers in case of the motion is either from point to point or oscillatory with small frequency.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Asmaa	Mohamed Abd El-star	Date://

Signature:

Dedication

To my mother and my husband. Without whom this work would not have been completed.

Acknowledgments

First of all, thanks god for helping me throughout my whole life. All praise is due to Allah who guided me to this.

I would like to thank Prof. Dr. Ahmed Kamel. He has been very supportive and has always provided me with the encouragement and advice to finish my work. I think that he has a serious personality. I learned great lessons from this serious and organized personality.

I also would like to thank Dr. Ahmed Lasheen who has treated me as step brother. During his supervision he has done great effort to make this work. As a result of his sincere and devoted efforts, this work becomes in this form.

To the candle that lights the path of my life, for my mother who built me to be as I am, thesis dedication is not enough to thank her.

I would like to thanks my husband. He has encouraged me in my work and has dedicated all his love, life and care for me.

Contents

DISCL	AIMER	I
DEDIC	ATION	II
ACKN	OWLEDGMENTS	III
LIST C	OF TABLES	VI
LIST C	OF FIGURES	. VII
ABSTR	RACT	X
CHAP	TER 1: INTRODUCTION	1
1.1.	Introduction:	1
1.2.	BASIC COMPONENT OF A ROBOT	1
1.3.	ROBOT CLASSIFICATIONS	3
1.3.1.	CLASSIFICATION BY DEGREE OF FREEDOM (DOF): .	3
1.3.2.	CLASSIFICATION BY COORDINATE SYSTEM:	5
1.3.3.	CLASSIFICATION BY CONTROL METHOD:	8
1.4.	MOTIVATION	8
1.5.	LITERATURE REVIEW	9
1.6.	THESIS OBJECTIVES	
1.7.	THESIS OUTLINE	
CHAP	TER 2: ROBOT KINEMATICS AND DYNAMIC MODELLING	
2.1.	Introduction:	
2.2.	ROBOT KINEMATICS:	
2.2.1.	FORWARD KINEMATICS:	13
2.2.1.1. PARAM	ASSIGNING THE COORDINATE FRAMES AND DH METERS: 13	
	2.2.1.2. DERIVATION OF LINK TRANSFORMATIONS	
MATR	ICES:	15
2.2.2.	INVERSE KINEMATICS:	16
2.3.	ROBOT DYNAMICS:	18
2.3.1.	LAGRANGE-EULER (L-E) EQUATION:	19
2.4.	SUMMARY	20
CHAP	TER 3 : PROPOSED ROBOT CONTROLLERS	21
3.1.	Introduction	21
3.2.	COMPUTED TORQUE CONTROLLER	21

3.2.1.	COMPUTED TORQUE CONTROL (CTC)	
IMPLE	EMENTATION	
3.3.	FUZZY LOGIC SYSTEM	. 25
3.3.1.	FUZZY CONTROLLER	. 25
3.3.2.	FUZZY CONTROLLER IMPLEMENTATION:	. 26
3.4.	COMPUTED TORQUE CONTROLLER PLUS FUZZY COMPENSATOR:	. 29
3.4.1. IMPLE	CTC PLUS FC COMPENSATOR DERIVATION AND EMENTATION:	. 29
3.5.	SUMMARY:	. 33
CHAP	ΓER 4 : SIMULATION RESULTS	. 34
4.1.	Introduction:	. 34
4.2.	STEP INPUT:	. 34
4.2.1. NONL	SYSTEM NONLINEARITY IS EQUAL TO CONTROLLER INEARITY $(SN = CN)$:	
4.2.2. NONL	SYSTEM NONLINEARITY IS NOT EQUAL TO CONTROLINEARITY $(SN = 0.3CN)$:	
4.3.	SIN INPUT:	. 42
4.3.1. WITH	MANIPULATOR RESPONSE FOR SINUSOIDAL INPUT FREQUENCY = 0.5 RAD/SEC:	42
4.3.2. WITH	MANIPULATOR RESPONSE FOR SINUSOIDAL INPUT FREQUENCY = 1 RAD/SEC	49
4.3.3. WITH	MANIPULATOR RESPONSE FOR SINUSOIDAL INPUT FREQUENCY = 3 RAD/SEC :	56
4.4.	SUMMARY:	. 62
СНАР	TER 5 : CONCLUSIONS AND FUTURE WORK	. 63
5.1. 5.2.	CONCLUSIONS	
BIBLI	OGRAPHY	. 64
APPEN	VDIX A	. 67

List of Tables

Table 1.1 Types of joints	Error! Bookmark not defined.
Table 2.1 DH parameter for PUMA 560 robot arm	. Error! Bookmark not defined.
Table 2.2 Link lengths	25
Table 3.1: Fuzzy control rule bases	39
Table 4.1 Position of the end effector and Error in all	controllers in case of $(S_N = C_N)$
and step input	48
Table 4.2 Position of the end effector and Error for all	I controllers in case of $(S_N \neq C_N)$
and step input	52

List of Figures

Figure 1.1 The cylindrical manipulator	.15
Figure 1.2 Workspace of cylindrical manipulator	.15
Figure 1.3 The spherical manipulator	16
Figure 1.4 Workspace of spherical manipulator	16
Figure 1.5 The revolute manipulator	
Figure 1.6 Workspace of the revolute manipulator	
Figure 1.7 The cartesian manipulator	
Figure 1.8 Workspace of cartesian manipulator	
Figure 2.1 Kinematics block diagram	
Figure 2.2 Frame assignment for the PUMA 560 manipulator	
Figure 3.1 Block diagram of PD-computed torque controller	
Figure 3.2 PD controller	
Figure 3.3 PD-CTC	
Figure 3.4 Dynamic parameters blocks (N)	
Figure 3.5 Overall system blocks	
Figure 3.6 Fuzzy Control System	
Figure 3.7 Error	
Figure 3.8 Delta error.	
Figure 3.9 Torque.	
Figure 3.10 Fuzzy Inference Block	
Figure 3.11 Fuzzy controller for link.	
Figure 3.12 Overall fuzzy system blocks	
Figure 3.13 CTC and Fuzzy compensator controllers	
Figure 3.14 Diagram of closed loop system	
Figure 4.1 Comparison of all controllers for joint 1 in case of $(S_N = C_N)$ and step	
input	.45
Figure 4.2 Comparison of all controllers for joint 2 in case of $(S_N = C_N)$ and step	. 15
input	46
Figure 4.3 Comparison of all controllers for joint 3 in case of $(S_N = C_N)$ and step	. 10
input	46
Figure 4.4 Comparison of all controllers for joint 4 in case of $(S_N = C_N)$ and step	. 10
input	47
Figure 4.5 Comparison of all controllers for joint 5 in case of $(S_N = C_N)$ and step	. 7 /
input	47
Figure 4.6 Comparison of all controllers for joint 6 in case of $(S_N = C_N)$ and step	.+/
input	18
Figure 4.7 Comparison of all controllers for joint 1 in case of $(S_N \neq C_N)$ and step	.40
input	40
Figure 4.8 Comparison of all controllers for joint 2 in case of $(S_N \neq C_N)$ and step	. 4 7
	50
input.	.30
Figure 4.9 Comparison of all controllers for joint 3 in case of $(S_N \neq C_N)$ and step	50
input. Figure 4.10 Companion of all controllers for ioint 4 in case of (S + C) and ston	.30
Figure 4.10 Comparison of all controllers for joint 4 in case of $(S_N \neq C_N)$ and step	<i>5</i> 1
input.	.31
Figure 4.11 Comparison of all controllers for joint 5 in case of $(S_N \neq C_N)$ and step	<i>-</i> 1
input	.51