

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

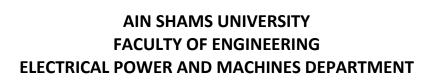
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EVALUATING THE DIELECTRIC STRENGTH OF ELASTOMERS EXPERIMENTALLY AND BY USING ARTIFICIAL INTELLIGENCE TECHNIQUE

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Submitted By Eng. Tamer Mohamed Ali Ali Sheta

B.Sc Electrical Engineering, Helwan University, 2008

Supervised By

Prof. Dr. Soliman Mohamed El-Debeiky

Prof. Dr. Loai Saad El-Deen Nasrat

Electrical Power & Machines Dept.
Faculty of Engineering
Ain Shams University

Electrical Power & Machines Dept.
Faculty of Engineering
Aswan University

Dr. Ahmed Hossam Gad

Electrical Power & Machines Dept.
Faculty of Engineering
Ain Shams University

Cairo 2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING, ELECTRICAL POWER AND MACHINES DEPARTMENT

Thesis: Evaluating the Dielectric Strength of Elastomers Experimentally and by

Using Artificial Intelligence Technique

Author: Eng. Tamer Mohamed Ali Sheta

Degree: Master of Science in Electrical Engineering

Supervised By:

Prof. Dr. Soliman Mohamed El-Debeiky Electrical Power & Machines Dept.

Faculty of Engineering
Ain Shams University

Prof. Dr. Loai Saad El-Deen Nasrat Electrical Power & Machines Dept.

Faculty of Engineering
Aswan University

Dr. Ahmed Hossam Gad Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Examiners Committee: Signature

Prof. Dr. Adel Sedky Emarah Electrical Power & Machines Dept.

Faculty of Engineering
Ain Shams University
Vice Chairman of

Dr. Eng. Elham Mohamed DarwishVice Chairman of
South Cairo Electricity Distribution

Company

Prof. Dr. Soliman Mohamed El-Debeiky Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Prof. Dr. Loai Saad El-Deen Nasrat Electrical Power & Machines Dept.

Faculty of Engineering Aswan University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author at the High Voltage Laboratory in the Electrical Power & Machines Department, the Polymers and Pigments Department in the National Research Centre (NRC). No part of this thesis has been submitted for a degree or a qualification at any other university.

Name: Tamer Mohamed Ali Sheta

Signature:

Date: 28 /12 / 2020

ACKNOWLEDGMENT

I have the great faith to express my deepest gratitude and sincerest thanks to **Prof. Dr. Soliman Mohamed El-Debeiky** at the Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University for his kind supervision, guidance and continuous encouragement.

I have the great honor to express my gratitude and thanks to **Prof. Dr. Loai Saad El-Deen Nasrat** at the Electrical Power & Machines Department, Faculty of Engineering, Aswan University for every good help until the thesis has been developed.

I would thank **Dr. Ahmed Hossam Gad** at the Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University for his fruitful suggestions.

Sincere thanks are extended to the staff of the High Voltage Laboratory, Electrical Engineering Department Faculty of Engineering, Ain Shams University and the National Research Center, Polymers & Pigments Dept. where most of samples preparations were carried out.

Finally, I would like to express my heart-felt gratitude to my wife, for her encouragement and companionship when encountering difficulties. I never would have made it this far without their constant love and support.

ABSTRACT

The epoxy and rubber are polymeric materials which nowadays became widely used as insulating materials for many reasons such as; better electrical and mechanical strengths, economical and ease of fabrication and maintenance. All these benefits contributed in producing polymeric materials in various shapes and designs for indoor and outdoor insulators applications with reasonable mechanical and electrical properties.

Ethylene propylene diene monomer (EPDM) is one of the composite materials that have promising electrical properties such as the electric resistivity and the dielectric strength determined by different tests, compared with other composite materials. By adding different filler percentages, the physical, electrical and mechanical properties of the composite material are enhanced.

EPDM composites are one of the best polymeric insulator composites which are widely used for cables insulation nowadays. In order to study the electrical properties for EPDM composite as cables insulation, Alumina Trihydrate (ATH) filler with different percentages are added to EPDM to enhance its mechanical, electrical and thermal properties when used under different climate conditions such as, dry, wet and salt conditions. Thus, tests have been carried out in the present work to investigate the dielectric strength for EPDM composites with various ATH loading. Further, the dielectric strength of EPDM composites have been calculated using an artificial neural network based on an investigated mathematical model.

Then, the breakdown voltage for composite insulators has been calculated using artificial neural network by the mathematical model under different climate conditions. Consequently, the results have been compared with experimental results, with the least error calculation. The best or the more reasonable composite suitable for conditions could be chosen.

Keywords: Polymers, EPDM, Fillers, ATH, Dielectric Strength, Mechanical Strength, Thermal aging, ANN

Table of Contents

STATE	MENT	I
ACKNO	DWLEDGMENT	II
ABSTR	ACT	. III
LIST O	F ABBREVIATION	VII
LIST O	F TABLES	. IX
LIST O	F FIGURES	. XI
LIST O	F EQUATION	XIII
CHAPT	ER 1: INTRODUCTION	1
1.1.	Preface	1
1.2.	Types of Insulating Elastomers	2
1.3.	Fillers	3
1.4.	Objective of This Thesis	4
1.5.	Thesis Outlines	5
CHAPT	ER 2: REVIEW OF LITERATURE AND PREVIOUS WORK	7
2.1.	General	7
2.2.	Polymers History	7
2.3.	Electrical Properties of Polymers Composite Insulators	9
2.4.	Effects of The Thermal and Climate Conditions on The Polymers	.18
2.5.	The Mechanical Properties of Composite Polymers Insulators	.24
CHAPT	ER 3: EXPERIMENTAL WORK AND TEST PROCEDURE	27
3.1.	General	.27
3.2.	Testing conditions	27
3.3.	Preparation of the Composite	.28
3.4.	The Dielectric Strength Measurements:	.29
3.4	1.1. The Testing Circuit Apparatus	29
3.4	I.2. The Experimental Procedure	31

	3.5.	The Mechanical Test	32			
_	CHAPTER 4: MEASUREMENTS, RESULTS AND ANALYSIS34					
	4.1.	General	34			
		Present Study Regarding Dielectric Strength of ATH Filler with EPDM				
	Com	posites	37			
		2.1. Study Regarding the Dielectric Properties of the ATH Filler with	20			
		DM Composites at Dry Conditions with Increasing Temperature	38			
		2.1.1. The dielectric strength of EPDM composites with different ATH er percentages at room temperature 25°C	38			
		2.1.1.1. Test Results				
		1.1.1.2. Discussion and Analysis of Results				
		1.1.2. The dielectric strength of EPDM composites with different ATH				
		er percentage at 70°C	42			
	4.2	1.1.3. The dielectric strength of EPDM composites with different ATH				
	fille	er percentages at 100°C	46			
	4.2	1.1.3.1. Test Results	46			
	4.2	1.1.3.2. Discussion and Analysis of Results	49			
		1.1.4. The dielectric strength of EPDM composites with different ATH				
	fille	er percentages at 130°C	50			
		2.1.5 Effects of the thermal conditions on the EPDM composites with	- 2			
	-	timum percentages of ATH filler	53			
		2.2. The Study of the dielectric strength of ATH Filler with EPDM mposites under Wet Conditions at Room Temperature	55			
		2.2.1. General performance of insulation and composites under wet				
		nditions	56			
	4.2	2.2.2. Present Test Results	57			
	4.2	3. The Study of the Dielectric Strength of ATH Filler with EPDM				
	Cor	mposites under Salt Conditions at Room Temperature	61			
	4.2	.3.1. General Conditions	61			
	4.2	.3.2. Present Test Results	62			

4.2.4 Effect of combined Dry, Wet and Salt Conditions on the EPDM	
Composite with Maximum Percentage of ATH Filler	65
4.3. Investigation of the Study Regarding Mechanical Properties of ATH F with EPDM Composite	
4.3.1. General	
4.3.2. The Tensile Strength of ATH Filler with EPDM Composite	67
CHAPTER 5: EVALUATION OF EPDM/ATH CHARACTERISTICS USING ARTIF	ICIAL
NEURAL NETWORK	72
5.1. General	72
5.2. A Background of the Artificial Neural Network	72
5.3. Neural Network Simulation Results	73
5.4. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Dry Conditions for a Temperature of (25° C)	74
5.5. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Dry Conditions for a Temperature of (70° C)	75
5.6. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Dry Conditions for a Temperature of (100° C)	77
5.7. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Dry Conditions for a Temperature of (130° C)	78
5.8. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Wet Conditions	80
5.9. ANN Results for Predicting the Dielectric Strength for ATH/EPDM Composite under Salt Conditions	81
CHAPTER 6: GENERAL CONCLUSIONS AND SUGGESTIONS FOR THE FUTUR	ĽΕ
WORKS	83
6.1. General	83
6.2. Conclusions	84
6.3. Recommendations and Suggestions for further Works	86
REFERENCES	87
Appendix	93
Published Paper	. 100

LIST OF ABBREVIATION

EPDM Ethylene Propylene Diene Monomer

ATH Alumina Trihydrate

UV Ultraviolet

NCIs Non-Ceramic Insulators

ASTM American Standard Test Method

MPa MegaPascal

ANN Artificial Neural Network

AC Alternative Current

NSDD Non-Soluble Deposit Density

ESDD Equivalent Salt Deposit Density

SiR Silicon Rubber

kV Kilo Volt

mm millimeter

TiO₂ Titanium Dioxide

AL₂O₃ Aluminum Oxide

Al(OH)₃ Aluminium hydroxide

SiO₂ Silicon Dioxide

PE Polyethylene

MMT Montmorillonite

XLPE Cross-Linked Polyethylene

DCP Distributed Control System

BDV Break Down Voltage

FOV Flashover Voltage

TGA Thermal gravimetric analysis

DSC Differential scanning calorimetry

UVA Ultraviolet A

UVC Ultraviolet C

PTFE Poly Tetra Fluoro Ethylene

NaCl Sodium Chloride

HTV High Temperature Vulcanized

CTE Coefficient of Thermal Expansion

ZnO Zinc Oxide

DC Direct Current

LDPE Low Density Poly Ethylene

Rm Mechanical Resistance

AVR Average

Bt Bentonite

HDT Heat Distribution Temperature

EPR Ethylene Propylene Rubber

LIST OF TABLES

Table (3-1):	Mixing Formulation.
Table (4-1):	Dielectric strength of EPDM composites with different ATH filler percentage at room temperature 25°C.
Table (4-2):	Average results at temperature 25°C.
Table (4-3):	Dielectric strength of EPDM composites with different ATH filler percentage at 70°C.
Table (4-4):	Average results at temperature 70°C.
Table (4-5):	Dielectric strength of EPDM composites with different ATH filler percentage at 100°C.
Table (4-6):	Average results at temperature 100°C.
Table (4-7):	dielectric strength of different composites at various temperatures
Table (4-8):	Dielectric strength of EPDM composites with different ATH filler percentage at 130°C.
Table (4-9):	Average results at temperature 130°C.
Table (4-10):	Dielectric strength of EPDM composites with different ATH filler percentage under wet condition.
Table (4-11):	Average results at wet condition.
Table (4-12):	Dielectric strength of EPDM composites with different ATH filler percentage under salt condition.
Table (4-13):	Average results at salt condition.
Table (4-14):	The Tensile Strength of EPDM composites with different ATH filler percentage.
Table (4-15):	Average results for Tensile Strength.
Table (5-1):	ANN output error percentages (%) at room temperature 25°C.
Table (5-2):	ANN output error percentages (%) at room temperature 70°C.

Table (5-3): ANN output error percentages (%) at room temperature 100°C.

Table (5-4): ANN output error percentages (%) at room temperature 130°C.

Table (5-5): ANN output error percentages (%) at wet condition.

Table (5-6): ANN output error percentages (%) at salt condition.