

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

The Potential Anti Breast Cancer Effect of Curcumin and Zinc Nanoparticles in Female Rats

A thesis Submitted to Faculty of Science, Ain Shams University for Partial Fulfillment of Master degree of Science in Biochemistry

By Omnia Hamdy Ahmed

B.Sc. in Biochemistry and Nutrition (2011)
Faculty of Science,
Ain Shams University, Faculty of women for
Arts, Science and Education.

Under Supervision of

Dr. Eman I. kandil

Professor of Biochemistry, Faculty of Science, Ain Shams University

Dr. Sawsan M. El-sonbaty

Assistant Professor of Biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority

Dr. Fatma S.M. Moawed

Assistant Professor of Biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority

ٱڷؚڹؚٱڹ

صدق الله العظيم،،،

الإسراء (آيه ٨٥)

Acknowledgement

First, foremost, all thanks to "Allah" by whose grace this work had been completed in such comeliness way and May Allah benefit the people with it.

I would like to express my profound thankfulness to the following people for their support , gave guidance and encouragement in making this work possible, May Allah repay all of them.

My deep thanks to **Dr.Eman I. Kandil**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her great efforts in the present work from suggesting the topic till the results interpretation & specially for her pray for me, May Allah make your reward great.

Also my deep thanks to **Dr.Sawsan M. El-sonbaty**, Assist. Professor of Biochemistry, Microbiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, For her unlimited helps and scientific advices during all steps of thesis preparation.

And no words can express my sincere gratitude to **Dr. Fatma S.M. Moawed**, Assist. Professor of Biochemistry, Health research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, For her continuous encouragement and advice.

Finally, Special deep thanks to all my dear family members, specially my father **Dr. Hamdy Taha**, Professor of special chemistry, Applied Organic Chemistry, National Centre for Research, for their sincere support and assistance.

Omnia Hamdy

Contents

Items	Page	
Abstract	I	
List of Abbreviations	Ш	
List of Figures	V	
List of Tables	VIII	
Introduction	1	
Aim of the work	4	
I. Review of Literature	5	
I.1.Cancer	5	
I.2. Breast cancer	5	
I.2.1. Etiology of Breast cancer	5	
I.2.2.Pathophysiology of Breast cancer	12	
I.2.3.Oxidative stress and breast cancer	17	
I.2.4.Management of breast cancer	20	
I.3.Nanotechnology	22	
I.3.1-Nanotechnology and cancer	22	
I.3.1.1-Therapeutic approaches of nanotechnology and Cancer	22	
I.3.1.2. Metal nanoparticles based drugs in cancer therapy		
I.4Zinc Oxide		
I.4.1.Zinc Oxide's nature	24	
I.4.2 Zinc Oxide's applications	25	
I.5.Synthesis of Nanoparticles	27	
I.5.1. Green Nanotechnologies	28	
1.6 Curcumin	29	
I.6.1. Chemistry of Curcumin	29	
I.6.2. Therapeutic and Biological Health Benefits of Curcumin	29	
II-Materials and methods	35	
II.1.Mareials	35	
II.1.1. chemicals	35	
II.1.2.Cell line	36	
II.1.3. Experimental animals	36	
II.2. Chemical studies		
II.2.1.Biosynthesis of ZnONPs coated by Cur (Cur-ZnONPs)	37	
II.2.2.Characterization of the Cur-ZnONPs	38	
II.2.2.1.Dynamic light scattering (DLS)of the Cur-ZnONPs	38	

Items				
II.2.2.2.Ultraviolet-visible absorption (UV/VIS) of Cur-	38			
ZnONPs				
II.2.2.3.Transmission electron microscope analysis of Cur-				
ZnONPs				
II.3.Evaluation of therapeutic antitumor efficacy Cur-ZnONPs				
II.3.1. <i>In vitro</i> study				
II.3.2. <i>In vivo</i> studies				
II.3.2.1.Determination of the Median Lethal Dose (LD ₅₀)				
II.3.2.2.Experimental Design				
II.4. samples Collection				
II.4.1.Blood sampling				
II.4.2.Tissue sampling				
II.5.Biochemical parameters				
II.5.1. Evaluation of liver Functions				
II.5.2.Evaluation of kidney Functions				
II.5.3. Evaluation of oxidative stress markers & antioxidant				
defense system (MDA, SOD and GSH) in the mammary				
gland tissue homogenates.				
II.5.4.Determination of total iron binding capacity (TIBC)				
II.5.5.Determination-of-Cyclooxygenase-2(cox2)concentration				
II.5.6.Determination of Tumor Neccrosis Factor alpha (TNF α)				
concentration				
II.5.7.Immunoblotting of phosphatidyl inositide 3- kinases				
(PI3K) and protein kinase B (PKB) (AKT)				
II.5.8.Assessment of caspase-3 in mammary gland tissue				
homogenates				
II.5.9. Histopathological investigation				
II.5.10. Statistical analyses				
III-Results				
IV-Discussion				
V-Summary and Conclusion				
VI- References				
VII-الملخص العربي				
الملخص العربي-VII المستخلص العربي-VIII				

Abstractct

Abstract

Cancer is an aggressive disease contributing strongly in deaths around world. Breast cancer is one of the most common causes of death in females. Although there are many breast cancer therapeutic stratigies, they either have limitations or sometimes be resisted by the cancer cells, so new approaches in that field are needed to tackle those restrictions. Nanotechnology plays an exciting role in diagnosis and treatment of cancer, especially breast cancer. The main object of this study was to investigate the effect of the newly synthesized zinc oxide nanoparticles coated by curcumin (Cu-Zno NPs) on the induced mammary gland carcinogenesis in female rats by 7,12-Dimethylbenz(a)anthracene (DMBA).

The antitumor efficacy of Cu-Zno NPs was conducted both *in vitro* and *in vivo*. *In vitro* study showed that Cu-Zno NPs inhibited human breast cancer cell line (MCF-7) proliferation with IC**50 of** 122 4.1 μg/ml. while *In vivo study*, the administration of Cu-Zno NPs to DMBA-treated rats ameliorated the hyperplastic state of mammary gland carcinogenesis induced by DMBA. Additionally, Cu-Zno NPs administration significantly modulated the activities of ALT and AST, as well as the levels of urea and creatinine in serum. Also Cu-Zno NPs administration improved the antioxidant state by increasing SOD activity and GSH content,

accompanied with decreasing MDA content in the mammary tissue.

Also, Cur-ZnONPs enhance the apoptotic activity through elevating the levels of caspase-3 and decreasing the protein expression of AKT & PI3K. Furthermore, a significant decrease in serum TIBC. Mild recurrence of normal mammary gland tissue was histopathologically appeared. Hence, it can be concluded that Cu-Zno NPs could be a promising adjuvant to the conventional breast cancer therapies.

List of Abbreviations

ACS	American Cancer Society		
ANOVA	Analyzed Using One way analysis of Variance		
BAX	Bcl-2-associated X protein		
BC	Breast cancer		
CAT	Catalase		
COX2	Cyclooxygenase-2		
Cur	Curcumin		
Cur-ZnONPs	Curcumin-Zinc Oxide Nanoparticles		
DLS	Dynamic light scattering		
DMBA	7,12-Dimethylbenz(<i>a</i>)anthracene		
Fe	Iron		
Fe ⁺³	Ferric iron		
GPx	glutathione peroxidase		
GSH	Reduced Glutathione		
GSSG	Glutathione disulfide		
IC ₅₀	Inhibitory Concentration		
LD_{50}	Median lethal dose		
MAPK	Mitogen- activated protein kinase		
MCF-7	Michigan cancer foundation-7		
MDA	Malondialdehyde		
MTT	3-[4,5-dimethylthiazole-2,5 diphenyltetrazolium		
	bromide		
NF-KB	Nuclear Factor KaPPa B		
NPs	Nanoparticles		
PKB	protein kinase B		
(AKT)	The "Ak" was a temporary classification name		
	for a mouse that developed spontaneous thymic		
DIAIZ	lymphomas. The "t" stands for 'thymoma';		
PI3K	Phosphatidylnositol 3- Kinase		
Pt	Platinum		
R	Reagent		
R.P.M	Rounds Per Minute		
RES	Response elements		
ROS	Reactive Oxygen Species		
RTKs	receptor tyrosine kinases		
S.D	standard deviation		