

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Engineering Department

Magnetic Field Effect on Abrasive Flow Machining Process

A Thesis submitted in a partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Production Engineering)

by

Ebrahim Mohamed Sabry Ebrahim Ahmed Mohamed

Bachelor of Science in Mechanical Engineering
(Production Engineering)

Modern Academy for Engineering and Technology, 2013.

Supervised By

Prof. M. AbdelMohsen Mahdy
Associate Prof. Mohamed Ahmed Awad

Dr. Fouad Farag Mansour

Cairo - (2020)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Department

Magnetic Field Effect on Abrasive Flow Machining Process

by

Ebrahim Mohamed Sabry Ebrahim Ahmed Mohamed

Bachelor of Science in Mechanical Engineering

Design and Production Engineering, Modern Academy for Engineering and Technology, 2013

Supervising Committee

Name and Affiliation	Signature
Prof. M. Abdelmohsen Mahdy	
Design and Production Engineering Department, Faculty of Engineering, Ain shams University	
Associate Prof. Mohamed Ahmed Awad Design and Production Engineering Department, Faculty of Engineering, Ain shams University	
Dr. Fouad Farag Mansour	
Egyptian Atomic Energy Authority	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Design and Production Department

Magnetic Field Effect on Abrasive Flow Machining Process

by

Ebrahim Mohamed Sabry Ebrahim Ahmed Mohamed

Bachelor of Science in Mechanical Engineering

Design and Production Engineering, Modern Academy for engineering and technology, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. M. Abdelmohsen Mahdy	
Design and Production Engineering Department, Faculty of Engineering, Ain shams University	
Prof. Nabil Abdel Hamid Gadallah	
Design and Production Engineering Department, Modern	
Academy in Maadi	
Prof. Hesham Aly Abdel Hamid Senbel	
Design and Production Engineering Department,	
Faculty of Engineering, Ain shams University	

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering , Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

5 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ebrahim Mohamed Sabry Ebrahim Ahmed
Signature

Student name

Date:22 February 2020

Researcher Data

Name : Ebrahim Mohamed Sabry Ebrahim Ahmed

Date of birth : December 19, 1990

Place of birth : Qalubia, Egypt

Last academic degree : Bachelor of science in mechanical engineering

Field of specialization : Design and Production Engineering University issued

the degree: Modern Academy for Engineering and

technology

Date of issued degree : June 2013

Current job : Teaching assistant, Modern Academy for Engineering

and Technology.

Email : ebrahimelshimy95@gmail.com

Summary

AFM is the most important process of finishing products and obtaining high surface quality. In this research, the effect of magnetic field on the quality of surfaces resulting from the cutting process was studied. In addition to the construction of experimental and mathematical models based on Design of Experiment concepts were built.

The quality of surfaces resulting from AFM process were recorded to distinguish the improvement of surface roughness and rate of metal removal during operation.

As two of the most important problems resulting from the process of cutting directly affect the quality of the finished product.

The raw materials used in this study were identified as: 318 stainless steel, in addition to its chemical composition and mechanical properties. Also, the specifications of the machine used in this research and the devices used in the measurement processes. And the method of calculating the weight of the material removed. sixteen experiments were conducted to study the effect of three different variables: the number of operating cycles, the flow rate of the plastic cutter, and the magnetic field strength on two performance parameters: the value of the removed material, as well as the surface roughness resulting from the cutting process.

The design of the experimental plan was designed using the standard L16 orthogonal matrix of Taguci method. As well as the average practical results recorded. The necessary graphs were created. The magnetic field results were analysed in addition to the effect of various factors on the cutting process such as: number of operating cycles, flow rate of plastic cutting material, magnetic field strength on two performance parameters namely the value of the removed material and the surface roughness resulting from the cutting process.

Mini Tab Version 17 was used to create the main effect drawings of the different variables on the performance parameters in order to determine the most important variables. It was then determined the effect of the different variables controlling the cutting process, and it was investigated that magnetic field has a significant effect on surface processed by AFM.

Keywords:

Abrasive Flow Machining, Magnetic field effect on AFM.

Abstract

In this research, studding of the effect of adding a magnetic field around the workpiece in abrasive flow machining has been addressed. Beside determination of effect between the parameter of AFM and the magnetic field and the effect of it on metal removal rate and the final surface finish.

It was investigated that magnetic field is a significant factor on Abrasive Flow Machining process. Number of cycles conducted has showed a significant effect than media flow rate of Abrasive Flow Machining process.

Acknowledgment

I would like to thank Prof. Dr. Mohamed Abdel Mohsen Mahdi for the support he provided me in all stages of the study. I would also like to thank Professor Mohamed Ahmed Awad for the support he provided me. Thanks also goes to Dr. Fouad Faraj Mansour for his effort in completing the practical part of the study and then preparing the thesis.

I also thank my colleagues Dr. Ahmed Al-Wardani, Dr. Yahya Al-Attar, Engineer Muhammad Al-Tawil, and Engineer Amir for helping in completing the thesis, I do not forget Professor Muhammad Abdu who was a good helper and remuneration. I also thank my wife and son for providing psychological comfort for the successful completion of the thesis. To my mother, sisters, and brothers may God bless them. Finally, to my father Mohamed Sabry Elshimy, may God have mercy on him, may I not disappoint your hope.

Table of Contents

Statement	i
Summary	iii
Abstract	iv
Acknowledgment	v
Table of Contents	vi
List of Figures	viii
List of Tables	xi
Abbreviations	xii
1.INTRODUCTION	1
1.1 Background of AFM	2
1.2 Problem statement	2
1.3Thesis organization	2
2.LITERATURE REVIEW	3
2.1 AFM Parameters and Their Influence on Quality Characteristics	3
2.2 AFM Machines Classification	3
2.2.1Single way AFM process:	3
2.2.2 Double way AFM process:	5
2.2.3 Orbital AFM Technique:	5
2.3 Principle of Metal Removal Mechanism	8
2.4 Process Modelling and Optimization	9
2.5 Monitoring of AFM Process	12
2.6 Media Composition and its Effect	13
2.7 Major Areas of Experimental Research in AFM	15
2.8 Developments in AFM Processes	17
2.9 Industrial Applications of AFM	21
3.EXPERIMENTAL DESIGN AND ANALYSIS	23
3.1 Taguchi Method:	23
3.2 TAGUCHI Design of Experiment	24
3.3 Signal to noise ratio	25
3.4 TAGUCHI Procedure	25
3.4.1 Selection of orthogonal array (OA)	25
3.4.2 Data collection of experimentation	26

3.4.3 Analyzing of Experimental data	26
4.EXPERIMENTAL WORK	27
4.1 Material Selection	27
4.2 AFM Machine	2
4.3 Test specimen geometry	32
4.4 Response Parameters Measuring	33
4.4.1 Measuring of Surface Roughness Ra	33
4.4.2 Measuring of Metal Removal	35
4.5 Control design	36
4.6 AFM Procedures	37
4.7 Process Operating Parameters	38
5.RESULTS AND DISCUSSION	41
5.1 The effect of different process parameters on surface roughness	41
5.2 The effect of number of cycles on surface roughness Ra	43
5.3 The effect of number of cycles and magnetic flux on surface roughness Ra	44
5.4 The effect of medium flow rate and magnetic flux on surface roughness Ra	48
5.5 Typical results of Response parameters	53
5.5.1 Results of Metal removed of the specimen	54
5.5.2 Results of Surface Roughness improvement of the specimen	55
5.6 The effect of different process parameters on material Removal	56
6.CONCLUSIONS	65
REFERENCES	66
Appendices	70
Appendix A	70
Annendix B	78

List of Figures

Figure 2-1 Schematic drawing of one-way AFM machine	4
Figure 2-2 (a) Single way AFM machine, (b) Industrial application of one-way AFM	
machine.	4
Figure 2-3 Double way AFM	5
Figure 2-4 Orbital AFM	6
Figure 2-5 Classification of major AFM research areas	6
Figure 2-6 AFM with drill bit in the medium	8
Figure 2-7 Industrial application of AFM process	1
Figure 2-8 Application of AFM in exhaust collectors	2
Figure 4-1 AFM machine	9
Figure 4-2 The cylinders in a top view	0
Figure 4-3 Internal construction of the fixture	0
Figure 4-4 schematic drawing of the AFM machine	1
Figure 4-5 The test specimen shape and dimension	2
Figure 4-6 The arranging and marking real-time of test specimens by different letters	
labels	3
Figure 4-8 Electronic balance (Metler, LC 0.001 g)	5
Figure 5-1 Effect of different parameters on the surface roughness Ra outcome from	
Taguci analysis	1
Figure 5-2 Effect of no. of cycles on Ra improvement at 15700 cm ³ /min 4	2
Figure 5-3 effect of no. of cycles on Ra improvement at 20935 cm³/min 4	3
Figure 5-4 The effect of number of cycles and magnetic field (at 0.02 T) on surface finish	h
improvement	4
Figure 5-5 The effect of number of cycles and magnetic field (at 0.04 T) on surface finish	h
improvement	5
Figure 5-6 The effect of number of cycles and magnetic field (at 0.06T) on surface finish	h
improvement4	6
Figure 5-7 The effect of number of cycles and magnetic field on surface finish	
improvement 4	7

Figure 5-8 Effect of media flow rate on Ra at two cycles
Figure 5-9 Effect of media flow rate on Ra at four cycles
Figure 5-10 the effect of medium flow rate on percentage of surface finish improvement
at six cycles
Figure 5-11 effect of medium flow rate on percentage of surface finish improvement at
eight cycles
Figure 5-12 Effect of medium flow rate and magnetic field (at 0.02 T) on surface finish
improvement
Figure 5-13 Effect of medium flow rate and magnetic field (at 0.04 T) on surface finish
improvement
Figure 5-14 Effect of medium flow rate and magnetic field (at 0.06 T) on surface finish
improvement
Figure 5-15 The effect of medium flow rate and magnetic field on surface finish
improvement
Figure 5-16 Effect of different Parameters on the Metal Removal outcomes from taguchi
ε
analysis
analysis