

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

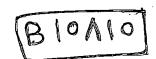
بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل



COEFECT CARGINATION

XYLANASE PRODUCTION BY

ASPERGILLUS TERREUS IN SOLID STATE

CULTURES

Thesis
Submitted to the Faculty of Science
Alexandria University

By

Heba Kamal Mahrouse

B.Sc. In Botany (Microbiolgy), 1992

In Partial Fulfillment for the Degree of M.Sc. In Botany (Microbiology)

Under the supervision of

Prof. Dr. Soraya A. Sabry

Prof. of Microbiology, Faculty of Science
Alexandria University

Dr. Hoda H. Yusef

Lecturer of Microbiology

Faculty of Science

Alexandria University

Dr. Nevine B. Ghanem

Lecturer of Microbiology

Faculty of Science

Alexandria University

Botany Department-Faculty of Science Alexandria University

ALCIANDRIA UNIVERSITY

EARLY OF SCIENCE

ENGHLE STUDIES

1998

This thesis has not been previously submitted for a degree at this or any other university and is the original work of the writer

Heba Kamal Mahrouse

To my mother

To whom I owe my gratitude and appreciation.

To the one who granted me patience and persistence to complete this research. I dedicate all my success and achievement to her.

May God bless her soul

CONTENTS

		Page
	AKNOWLEDGMENT	
1.	INTRODUCTION	1
1.1.	Solid-substrate fermentation SSF	1
1.1.1.	Filamentous fungi in solid substrate cultivation (SSC)	1
1.1.2.	Physiological capabilities of filamentous fungi	2
1.2.	Substrates for SSC	3
1.2.1.	Lignocellulose as a substrate for SSC	4
1.2.2.	Hemicelluloses	4
1.2.2.1.	Xylan, structure and distribution in nature	5
1.3.	Environmental parameters affecting microbial growth	5
	and product formation on SSC	
1.3.1.	Moisture and water activity	5
1.3.2.	Temperature and heat transfer	6
1.3.3.	рН	7
1.3.4.	Aeration	8
1.3.5.	Substrate concentration and availability	8
1.3.6.	Product concentration and yields	8
1.4.	Exoenzymes produced by solid-state processes	9
1.4.1.	Xylanases	9
1.4.1.1.	Sources of xylanases	10
1.4.1.1.1	. Fungal xylanases	10

1.4.1.1.2	2. Cellulase-free xylanases	11
1.4.2.	Purification of xylanases	11
1.4.2.1.	Precipitation of protein	12
1.4.2.2.	Separation and purification	12
1.4.3.	Importance of xylanases	12
1.5.	Application of statistical designs for medium	13
	optimization	
2. MAT	TERIALS AND METHODS	15
2.1.	Materials	15
2.1.1.	Organism	15
2.1.2.	Chemicals	15
2.1.3.	Agro-industrial by products	15
2.1.4.	Medium	15
2.2.	Methods	16
2.2.1.	Maintenance of stock cultures	16
2.2.2.	Treatment of wheat straw	16
2.2.2.1.	Physical treatment	16
2.2.2.2.	Steam treatment	16
2.2.2.3.	Delignification with NaOH	16
2.2.2.4.	Delignification with NaClO ₂	17
2.2.3.	Inoculum and cultivation	17
2.2.4.	Application of Plackett-Burman statistical design to	17
	investigate the effect of nutrients	

\......

2.2.5.	Preparation of the crude enzyme	20
2.2.6.	Estimation of the extracellular protein	20
2.2.7.	Enzyme activity assays	21
2.2.8.	Purification of the enzyme	21
2.2.8.1.	Partial purification by salting-out with ammonium	22
	sulphate	
2.2.8.2.	Column chromatography of the partially purified	22
	enzyme	
2.2.8.2.1.	Purification by ion-exchange chromatography	23
	on DEAE-cellulose A-50 biogel	
2.2.8.2.2.	Purification by gel filtration	24
2.2.8.3.	Discontinuous polyacrylamide gel electrophoresis	25
	(Disc-PAGE)	
3. RESU	JLTS	26
3.1.	Introduction of xylanase by different agro-industrial	26
	by products using A. terreus in solid state	
	fermentation (SSF)	
3.2.	Utilization of pre-treated wheat straw	29
3.3.	Optimization of fermentation parameters controlling	32
	A. terreus xylanase production	
3.3.1.	Effect of waste level	32
3.3.2.	Time course of xylanase production	32
3.3.3.	Influence of different nitrogen sources on the	35

production of A. terreus xylanase

3.3.4.	Effect of moisture content	40
3.3.5.	Age and size of inoculum	40
3.3.6.	Plackett-Burman experimental design	43
3.4.	Purification of A. terreus xylanase	53
3.4.1.	Partial purification of A. terreus xylanase	53
3.4.2.	Anion exchange chromatography on DEAE-	55
	cellulose A-50 biogel column	
3.4.3.	Gel filtration	55
3.5.	Study of the enzyme kinetics	58
3.5.1.	Effect of substrate concentration	58
3.5.2.	Effect of incubation temperature	62
3.5.3.	Effect of pH value of the reaction	62
3.5.4.	Thermal stability of the enzyme	68
3.5.5.	Substrate specificity	68
3.5.6.	Effect of some activators and inhibitors on the	68
	xylanase activity	
4.	DISCUSSION	76
5.	SUMMARY	93
6.	REFERENCES	96
	A-9 .	

APPENDIX

ARABIC SUMMARY

ACKNOWLEDGEMENT

I wish to express my grateful thanks and deep appreciation to Prof. Dr. Soraya A. Sabry, who suggested the topic of this thesis and who meticulously supervised the execution of the experimental studies and she was always present with tremendous help in the preparation and revision of the manuscript.

I am greatly indebted to Dr. Nevine B. Ghanem for her valuable suggestions and precious guidance during the experimental work and during the preparation and revision of the manuscript.

Sincere thanks are expressed to Dr. Hoda H. Yusef for her kindness help and encouragement during the experimental work and during the preparation and revision of the manuscript.

I express my thanks to Dr. Zakia Olama, Dr. Ehab El-Helow, Dr. Mohamed Saad and Dr. Mona El-Sayed for their help and advice during the experimental work.

Thanks are also due to my colleagues in the microbiology laboratory for their help and encouragement, I want to thank especially Aida El-Shahat and Amani El-Ahwany.

Profound thanks are also expressed to my father for his support and invaluable help. I thank also my husband for his patient and encouragement.

1

1. INTRODUCTION

1.1. Solid-substrate fermentation SSF

Solid substrate fermentations (SSF) are characterized by the growth of microorganisms on water insoluble substrates in the presence of varying amounts of free water (Mitchell and Lonsane, 1992). The term solid-state fermentation was proposed for all those processes which utilize water insoluble materials for microbial growth in the absence of free water (Moo-Young et al, 1983). SSF processes are variously referred to as solid fermentation, semi-solid fermentation, surface culture, kojii fermentation (Blain, 1975; Mial, 1975; Knapp and Howell, 1980; Lonsane et al, 1985).

The efficiency, productivity and economy of SSC are affected by various factors (Ralph, 1976; Hesseltine, 1977a,b; Aidoo *et al*, 1982; Lonsane, *et al*, 1985). The single most important feature is the moisture content of the medium, which makes SSC fundamentally different from submerged liquid culture (Mudgett, 1986). Several advantages of solid-state cultures over submerged-liquid cultures have been claimed by various workers (Hesseltine, 1977a,b; Cannel & Moo-Young, 1980; Mudgett, 1986).

1.1.1. Filamentous fungi in solid-substrate cultivation (SSC)

Many bacteria, yeast and fungi are capable of growth on solid substrates and find therefore application in SSC processes. Amongst these microorganisms, filamentous fungi are the most important group owing to their physiological capabilities and hyphal mode of growth (Mitchell, 1992). Extensive research work is progressing in SSC processes for the