

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

## جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY





# Use of Continuous-Flow Sequencing Batch Biofilm Reactor (CSBBR) for Improving the Treatment Process in the Wastewater Treatment Plants

By

#### **Ahmed Abdelhalim Sallam**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering-Public Works

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

## Use of Continuous-Flow Sequencing Batch Biofilm Reactor (CSBBR) for Improving the Treatment Process in the Wastewater Treatment Plants

## By **Ahmed Abdelhalim Sallam**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** 

in

**Civil Engineering-Public Works** 

Under the Supervision of

#### Prof. Dr. Hisham Sayed Abdel Halim

Dr. Abdelsalam Ahmed Elawwad

Professor of Sanitary and Environmental
Engineering
Public Works Department
Faculty of Engineering ,Cairo University

Associate Professor of Sanitary and Environmental Engineering Public Works Department Faculty of Engineering ,Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

## USE OF CONTINUOUS-FLOW SEQUENCING BATCH BIOFILM REACTOR (CSBBR) FOR IMPROVING THE TREATMENT PROCESS IN THE WASTEWATER TREATMENT PLANTS

By

#### **Ahmed Abdelhalim Sallam**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

**Civil Engineering-Public Works** 

| Examining Committee                |                     |
|------------------------------------|---------------------|
| Prof. Dr. Hisham Sayed Abdel Halim | Thesis Main Advisor |
| Dr. Abdelsalam Ahmed Elawwad       | Advisor             |
| Dr. Mona Mohammed Galal El-Din     | Internal Examiner   |
| Prof. Dr. Maha Mostafa El Shafei   | External Examiner   |

- Professor of sanitary and environmental engineering, Housing and Building National Research Center

Approved by the

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: <u>Ahmed Abdelhallem Sallam Bekhet.</u>

**Date of Birth:** 31/12/1965 **Nationality:** Egyptian

**E-mail:** ahmdsallamsallam@gmail.com

 Phone:
 01223411972

 Registration Date:
 01/10/2012

 Awarding Date:
 / /2020

**Degree:** Master of Science

**Department:** Civil Engineering – Public Works.

**Supervisors:** 

Prof. Hisham Abdel Halim Dr. Abdelsalam Elawwad

**Examiners:** Prof. Dr. Hisham Sayed Abdel Halim Thesis Main Advisor

Dr. Abdelsalam Ahmed Elawwad Advisor

Dr. Mona Mohammed Galal El-Din Internal Examiner
Prof. Dr. Maha Mostafa El Shafei External Examiner
-Professor of sanitary and environmental engineering,

Housing and Building National Research Center

#### **Title of Thesis:**

Use of Continuous-Flow Sequencing Batch Biofilm Reactor (CSBBR) for Improving the Treatment Process in the Wastewater Treatment Plants

#### **Key Words:**

Wastewater treatment; CSBBR; Organic Removal; SBR with media; wastewater treatment.

**Summary:** In this research, a pilot plant was constructed and operated using the continuous-flow sequencing batch biofilm reactor (CSBBR) to study its performance towards wastewater treatment. The experimental work was conducted at Zenien WWTP through different 4 stages using two reactors (R1, R2): The first stage (start-up) carried out in 49 days, the second stage (Low organic load) carried out in 21 days, the third stage (Low organic with added media in R2) carried out in 70 days, and the fourth stage (medium organic load with added media in R2) carried out in 84 days, respectively. Thus, the pilot plant has been operated for 224 continuous days. The temperature was between (16.1 - 33 °C), and pH (6.00 - 7.84). The media used during the third & fourth stages is polyethylene HDPE Bio Pac Media with specific surface area of 600 m<sup>2</sup>/m<sup>3</sup> and have been occupied 30% of the reactor volume. The solid retention time (SRT) was adjusted to be 15 days for all stages, flow rate was (10 L/Hr.), and hydraulic retention time (HRT) was (6 hrs.) for all stages. The removal rates have improved after media addition, and the pilot plant has showed stability for the treatment process with load increases.



### **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Ahmed Abdelhallem Sallam Bekhet Date: / /2020

Signature:

## Acknowledgments

I would like to thank the almighty Allah for the uncountable blessing and mercy that he has bestowed upon me. My sincerest appreciations go to my supervisors Prof. Hisham Sayed Abdel Halim, and Dr. Abdelsalam Elawwad. Thank you so much for your guidance, input throughout the research and thesis writing period. The last and the most important, my mother and my family. All is nothing without your support and pray. Thank you.

## **Table of Contents**

| <u>LIST OF TABLES</u>                                | vi  |
|------------------------------------------------------|-----|
| <u>LIST OF FIGURES</u>                               | vii |
| NOMENCLATURE                                         | xi  |
| ABSTRACT                                             | xii |
| CHAPTER 1: INTRODUCTION                              | 1   |
| 1.1. Background.                                     | 1   |
| 1.2. Problem statement                               | 2   |
| Research objectives                                  | 2   |
| CHAPTER 2: LITERATURE REVIEW                         | 3   |
| 2.1. Introduction                                    | 3   |
| 2.2. Impact of regulations on wastewater engineering | 3   |
| 2.3. Process of treatment.                           | 4   |
| 2.3.1. Preliminary/Primary Treatment                 | 6   |
| 2.3.2. Screening Influent Wastewater                 | 6   |
| 2.3.3. Grit Removal.                                 | 7   |
| 2.3.4. Influent-Flow Equalization.                   | 7   |
| 2.4. Advanced wastewater treatment.                  | 8   |
| 2.5. Sequencing batch reactor (SBRs)                 | 9   |
| 2.5.1. SBR Characteristics.                          | 10  |
| 2.5.2. Basic Treatment Process.                      | 10  |
| 2.5.2.1. Fill.                                       | 10  |
| 2.5.2.2. React                                       | 12  |
| 2.5.2.3. Settle                                      | 12  |
| 2.5.2.4. Decant                                      | 12  |
| 2.5.2.5. Idle                                        | 13  |
| 2.5.3. Continuous-Flow Systems.                      | 13  |
| 2.6. Design guidelines.                              | 13  |
| 2.6.1. Basin Design                                  | 13  |
| 2.7. Flow-Paced Batch Operation                      | 14  |
| 2.8. Lessons from the Field                          | 14  |
| 2.9. Blower Design                                   | 15  |

| 2.10. Variable Frequency Drives – VFDs                 | 15 |
|--------------------------------------------------------|----|
| 2.11. Decanting                                        | 16 |
| 2.12. Bottom Slope                                     | 16 |
| 2.13. Maintenance                                      | 16 |
| 2.14. Post Basin                                       | 16 |
| 2.15. Operational suggestions                          | 17 |
| 2.15.1. Parameters to be monitored by the SCADA system | 17 |
| 2.16. Cold-Climate Adjustments                         | 18 |
| 2.17. Sampling                                         | 19 |
| 2.17.1. Proper Sampling Points                         | 19 |
| 2.18. Parameters to Monitor.                           | 19 |
| 2.18.1. Solids Retention Time – SRT                    | 19 |
| 2.18.2. Sludge Wasting.                                | 19 |
| 2.19. Alkalinity                                       | 20 |
| CHAPTER 3: MATERIALS AND METHODS                       | 21 |
| 3.1. Plan of Work                                      | 21 |
| 3.2. Description of Zenein WWTP                        | 22 |
| 3.3. Pilot plant setup                                 | 24 |
| 3.4. The media                                         | 29 |
| 3.5. Chemicals used for increasing the organic load    | 30 |
| 3.6. Wastewater samples collection                     | 31 |
| 3.6.1. Sampling program                                | 32 |
| 3.7. Analytical methods                                | 33 |
| 3.7.1. Chemical oxygen demand (COD)                    | 33 |
| 3.7.2. Biological oxygen demand (BOD)                  | 33 |
| 3.7.3. Total kjeldahl nitrogen (TKN)                   | 33 |
| 3.7.4. Ammonium nitrogen                               | 34 |
| 3.7.5. Nitrite nitrogen                                | 34 |
| 3.7.6. Nitrate nitrogen                                | 35 |
| 3.7.7. Total nitrogen.                                 | 35 |
| 3.7.8. Phosphorus                                      | 35 |
| 3.7.9. Total suspended solids (TSS)                    | 36 |

| 3.7.10. Volatile suspended solids (VSS)                     | 36  |
|-------------------------------------------------------------|-----|
| 3.7.11. Alkalinity                                          | 36  |
| 3.7.12. Sludge volume index (SVI)                           | 36  |
| CHAPTER 4: RESULTS AND DISCUSSION                           | 38  |
| 4.1. Introduction                                           | 38  |
| 4.2. Starting up period (Run I)                             | 38  |
| 4.3. Second stage period (RUN II).                          | 48  |
| 4.4. Third stage period (RUN III)                           | 58  |
| 4.5. Fourth stage period (RUN IV)                           | 68  |
| 4.6. Assessment of influent and effluent wastewater quality | 78  |
| 4.6.1. BOD results.                                         | 78  |
| 4.6.2. COD results.                                         | 81  |
| 4.6.3. VSS results                                          | 84  |
| 4.6.4. TSS results.                                         | 87  |
| 4.6.5. MLSS & MLVSS results                                 | 90  |
| 4.6.6. NO <sub>2</sub> &NO <sub>3</sub> results.            | 92  |
| 4.6.7. NH <sub>4</sub> results.                             | 94  |
| 4.6.8. pH value                                             | 96  |
| 4.6.9. Temperature measurements                             | 97  |
| 4.6.10. DO measurements                                     | 97  |
| 4.7. Batch Reactors                                         | 98  |
| 4.7.1. Run 1. Carbon removal                                | 98  |
| 4.7.2. Run 2. Denitrification.                              | 100 |
| 4.7.3. Run 3. Nitrification.                                | 103 |
| CHAPTER 5: CONCLUSIONS AND RECOMEDATIONS                    | 105 |
| 5.1. Conclusions                                            | 105 |
| 5.2. Recommendations.                                       | 107 |
| REFERENCES                                                  | 108 |
| APPENDIXES                                                  | 118 |

## LIST OF TABLES

| Table 3.1 Plan of work and operating conditions                                | 22 |
|--------------------------------------------------------------------------------|----|
| Table 3.2 Specification of the media                                           | 30 |
| Table 3.3 Chemical added to increase organic load                              | 31 |
| Table 4.1 Operation condition of startup period                                | 39 |
| Table 4.2 Results summery of startup period                                    | 39 |
| Table 4.3 Operation condition of second period                                 | 49 |
| Table 4.4 Results summery of second period                                     | 49 |
| Table 4.5 Operation condition of third period                                  | 58 |
| Table 4.6 Results summery of third period                                      | 59 |
| Table 4.7 Operation condition of fourth period                                 | 68 |
| Table 4.8 Results summery of fourth period                                     | 69 |
| Table 4.9 BOD concentrations and its removal efficiency % by R1 in all stages  | 79 |
| Table 4.10 BOD concentrations and its removal efficiency % by R2 in all stages | 81 |
| Table 4.11 COD concentrations and its removal efficiency % by R1 in all stages | 82 |
| Table 4.12 COD concentrations and its removal efficiency % by R2 in all stages | 84 |
| Table 4.13 VSS concentrations and its removal efficiency % by R1 in all stages | 86 |
| Table 4.14 VSS concentrations and its removal efficiency % by R2 in all stages | 87 |
| Table 4.15 TSS concentrations and its removal efficiency % by R1 in all stages | 89 |
| Table 4.16 TSS concentrations and its removal efficiency % by R2 in all stages | 90 |
| Table 4.17 pH values for R1, R2                                                | 96 |
| Table 4.18 Atmospheric temperature values on-site                              | 97 |
| Table 4.19 DO values of the R1, R2.                                            | 98 |
| Table 4.20 Chemicals added to the batches.                                     | 98 |

## LIST OF FIGURES

| Figure 2.1 Schematic diagrams of a wastewater plant. (Azadi et al., 2015)      |  |
|--------------------------------------------------------------------------------|--|
| Figure 2.2 Schematic diagrams of SBR wastewater plant                          |  |
| Figure 3.1 General Layout of Zenein WWTP                                       |  |
| Figure 3.2 Schematic diagram of the pilot plant.                               |  |
| Figure 3.3 Details of the reactor and components                               |  |
| Figure 3.4 Air diffusers at the bottom of the reactors                         |  |
| Figure 3.5 Feeding tank 500 L                                                  |  |
| Figure 3.6 The reactors and decant pumps.                                      |  |
| Figure 3.7 Influent pipe of the reactors                                       |  |
| Figure 3.8 Pilot Plant after construction.                                     |  |
| Figure 3.9 Sample of media.                                                    |  |
| Figure 3.10 The sampling bottles                                               |  |
| Figure 4.1 Influent and effluent BOD concentrations in R1 at start-up stage    |  |
| Figure 4.2 BOD removal percentage in R1 at start-up stage                      |  |
| Figure 4.3 Influent and effluent COD concentrations in R1 at start-up stage    |  |
| Figure 4.4 COD removal percentage in R1 at start-up stage                      |  |
| Figure 4.5 BOD & COD loads in R1 and R2 at start-up stage                      |  |
| Figure 4.6 Influent and effluent of VSS concentration in R1 at start-up stage  |  |
| Figure 4.7 VSS removal percentage in R1 at start-up stage                      |  |
| Figure 4.8 Influent and effluent of TSS concentration in R1 at start-up stage  |  |
| Figure 4.9 TSS removal percentage in R1 at start-up stage                      |  |
| Figure 4.10 Influent and effluent of BOD concentration in R2 at start-up stage |  |
| Figure 4.11 BOD removal percentage in R2 at start-up stage                     |  |
| Figure 4.12 Influent and effluent of COD concentration in R2 at start-up stage |  |
| Figure 4.13 COD removal percentage in R2 at start-up stage                     |  |
| Figure 4.14 Influent and effluent of VSS concentration in R2 at start-up stage |  |
| Figure 4.15 VSS removal percentage in R2 at start-up stage                     |  |
| Figure 4.16 Influent and effluent of TSS concentration in R2 at start-up stage |  |
| Figure 4.17 TSS removal percentage in R2 at start-up stage                     |  |
| Figure 4.18 Influent and effluent of BOD concentration in R1 at second period  |  |
| stage                                                                          |  |

| Figure 4.19 BOD removal percentage in R1 at second period stage                    | 50         |
|------------------------------------------------------------------------------------|------------|
| Figure 4.20 Influent and effluent of COD concentration in R1 at second period      | 51         |
| stage                                                                              | <i>J</i> 1 |
| Figure 4.21 COD removal percentage in R1 at second period stage                    | 51         |
| Figure 4.22 BOD & COD loads in R1 and R2 at second period stage                    | 52         |
| Figure 4.23 Influent and effluent of VSS concentration in R1 at second period      | <i>50</i>  |
| stage                                                                              | 52         |
| Figure 4.24 VSS removal percentage in R1 at second period stage                    | 53         |
| Figure 4.25 Influent and effluent of TSS concentration in R1 at second period      | 53         |
| stage                                                                              | 33         |
| Figure 4.26 TSS removal percentage in R1 at second period stage                    | 54         |
| Figure 4.27 Influent and effluent of BOD concentration in R2 at second period      | 54         |
| stage                                                                              | 54         |
| Figure 4.28 BOD removal percentage in R2 at second period stage                    | 55         |
| Figure 4.29 Influent and effluent of COD concentration in R2 at second period      | 55         |
| stage                                                                              | 3.         |
| Figure 4.30 COD removal percentage in R2 at second period stage                    | 56         |
| Figure 4.31 Influent and effluent of VSS concentration in R2 at second period      | 56         |
| stage                                                                              | 50         |
| Figure 4.32 VSS removal percentage in R2 at second period stage                    | 57         |
| Figure 4.33 Influent and effluent of TSS concentration in R2 at second period      | 57         |
| stage                                                                              | 31         |
| Figure 4.34 TSS removal percentage in R2 at second period stage                    | 58         |
| Figure 4.35 Influent and effluent of BOD concentration in R1 at third period stage | 59         |
| Figure 4.36 BOD removal percentage in R1 at third period stage                     | 60         |
| Figure 4.37 Influent and effluent of COD concentration in R1 at third period stage | 60         |
| Figure 4.38 COD removal percentage in R1 at third period stage                     | 61         |
| Figure 4.39 BOD & COD loads in R1 and R2 at third period stage                     | 61         |
| Figure 4.40 Influent and effluent of VSS concentration in R1 at third period stage | 62         |
| Figure 4.41 VSS removal percentage in R1 at third period stage                     | 62         |
| Figure 4.42 Influent and effluent of TSS concentration in R1 at third period stage | 63         |
| Figure 4.43 TSS removal percentage in R1 at third period stage                     | 63         |