

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Association Between Increase of Serum Fructosamine and Unexplained Recurrent Pregnancy Loss

Thesis

Submitted For Partial Fulfillment of Master Degree in Obstetrics & Gynaecology

By

Kholoud Ibrahim Ameen Salaama

M.B.B.Ch., Faculty of Medicine - 6 October University (2013)

Under supervision of

Prof. Dr. Ihab Fouad Serag Eldeen Allam

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Prof. Dr. Abdellatif Galal El Kholy

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. Gihan El Sayed El Hawwary

Lecturer of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Thab Found Serag Eldeen**Allam, Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Abdellatif Galal El Kholy,**Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Gihan El Sayed El****Bawwary**, Lecturer of Obstetrics & Gynecology Faculty of

Medicine - Ain Shams University, for her great help, active

participation and guidance.

Kholoud Ibrahim Ameen Salaama

Dedication

Words can never express my sincere thanks to My Family,
My Loving Husband Abdellatif and My Loving Son Maher
for their generous emotional support and continuous
encouragement, which brought the best out of me. I owe them all
every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, (special thanks to Laboratory El Mokhtabar), so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

ABSTRACT

Background: Recurrent pregnancy loss (RPL) is one of the most frustrating and difficult areas in reproductive medicine because the etiology is often unknown. Endocrine factors may account for 15 to 60 percent of RPL. Pre-gestational diabetes is associated with an elevated risk of pregnancy loss, but it is unclear whether subclinical glucose intolerance is associated with pregnancy loss or not, especially recurrent pregnancy loss (RPL).

Objective: comparing maternal serum fructosamine in patients with and without RPL to determine whether increase serum fructosamine is associated with RPL.

Patients and Methods: This case control study was conducted on Ain Shams University Maternity Hospital, antenatal care clinic and contraception clinic from December 2018 to August 2019. The population of this study was women with recurrent miscarriage attended Ain Shams University Maternity Hospital age 20-40 years with BMI < 30 kg/m2 with two or more unexplained pregnancy losses prior to 20 weeks' gestation with no more than one live birth (cases). Women had at least one uncomplicated full-term delivery (control group) and all the husbands had a spermiogram within normal limits. Maternal serum was analyzed for fructosamine on quantitative spectrophotometry

Results: serum fructosamine was higher in women with RPL compared with controls. Comparative study between RPL group and control shows non-significant difference as regards age, BMI and residence. Serum fructosamine had no relation to BMI in RPL patients.

Conclusion: In our study, analysis of data revealed that serum fructosamine was increased in RPL group compared to control group. By using ROC-curve analysis, serum fructosamine level at a cutoff point (>231) predicted women with abortion event, with fair (76%) accuracy, sensitivity= 60% and specificity= 82% (p < 0.01). Thus, subclinical glucose intolerance may be associated with an increased risk of RPL. Spearman's correlation analysis shows that; age and serum fructosamine had a highly significant positive correlation with RPLs however parity had a highly significant negative correlation with RPL. Multiple regression analysis shows that; after applying (backward method) and entering some predictor variables; the increase in serum fructosamine; had an independent effect on increasing RPLs. Logistic regression analysis shows that; after applying (backward method) and entering some predictor variables; the increase in serum fructosamine; had an independent effect on increasing the probability of abortion event.

Keywords: Recurrent pregnancy loss, fructosamine, BMI.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Protocol	
Introduction	1
Aim of the Work	4
Review of Literature	
Recurrent Pregnancy Loss (RPL)	5
Serum Fructosamine and Recurrent Pregnar	ncy Loss55
Methodology	64
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between the 2 groups a basic clinical data using Mann-Wh and Chi square tests	itney's U
Table (2):	Comparison between the 2 groups a serum fructosamine using Mann-Whatest	nitney's U
Table (3):	Comparison between the 2 groups a obstetric outcome data using Mann-U test	Whitney's
Table (4):	Comparison between the 2 groups a serum fructosamine using Mann-Whatest	nitney's U
Table (5):	Comparison between RPL cases with high BMI.	
Table (6):	Spearman's correlation analysis clinical / laboratory / obstetric associated with abortions (RPLs)	Factors
Table (7):	Multiple regression model for the affecting RPLs using backward meth	
Table (8):	Logistic regression model for the affecting occurrence of abortion evbackward method	ent using
Table (9):	Roc-curve of serum fructosamine twomen with abortion event	-

List of Figures

Fig. No.	Title Page N	10.
Figure (1):	Comparison between the 2 groups as regards Serum fructosamine.	76
Figure (2):	Comparison between the 2 groups as regards parity.	78
Figure (3):	Comparison between the 2 groups as regards gravidity	78
Figure (4):	Comparison between RPL cases with low and high BMI	81
Figure (5):	Correlation between RPLs and age	84
Figure (6):	Correlation between RPLs and parity	84
Figure (7):	Correlation between RPLs and serum fructosamine.	85
Figure (8):	ROC curve of serum fructosamine	87

List of Abbreviations

Abb. Full term	
AFC Antral follicle count	
AMH Anti-müllerian hormone	
ANA Antinuclear antibody	
aPL Antiphospholipid antibodies	
APS Antiphospholipid syndrome	
ASRM American Society for Reproductive Medicine	
DIEP Diabetes In Early Pregnancy	
E2 Estradiol	
ERA Endometrial receptivity analysis	
ESRD End stage renal disease	
FSH Follicle stimulating hormone	
GA Glycated albumin	
GCT Glucose challenge test	
GDM Gestational diabetes mellitus	
GM-CSF Granulocyte macrophage-colony stimulating factor	
HbA1c Glycated hemoglobin	
hCG Human chorionic gonadotropin	
HLA-GHuman leukocyte antigen-G	
HLAs Human leukocyte antigens	
hMG Human menopausal gonadotropin	
HPVHuman papillomaviruses	
HSG Hysterosalpingography	
IgG Immunoglobulin G	
IL Interleukin	
IUGR Intrauterine growth restriction	

List of Abbreviations Cont...

Abb. Full term
IVF In vitro fertilization
LHLuteinizing hormone
LMWH Low-molecular weight heparin
LPSLipopolysaccharide
M-CSF Macrophage-colony stimulating factor
MRI Magnetic resonance imaging
NGSB National glycohemoglobin standardization program
NICHD National Institute of Child Health and Human Development
NQMC National quality measures clearinghouse
OGTT Oral glucose tolerance test
PCOS Polycystic ovary syndrome
pETPersonalized embryo transfer
PGE2 Prostaglandin E2
PGS Preimplantation genetic screening
QOFG Quality and outcomes framework guidance
RCOGRoyal College of Obstetricians and Gynaecologists
RPLRecurrent pregnancy loss
TGF-beta Transforming growth factor-beta
TLR4 Toll-like receptor 4
TNF-alpha Tumor necrosis factor-alpha
TPO Thyroid peroxidase
Tregs T regulatory cells
TVS Transvaginal ultrasound
WHO World Health Organization

Protocol

PROTOCOL OF A THESIS FOR PARTIAL FULFILMENT OF MASTER DEGREE IN OBSTETRICS & GYNAECOLOGY

Title of the Protocol: The association between increase of serum fructosamine and unexplained recurrent pregnancy loss.

Postgraduate Student: kholoud Ibrahim ameen salaama

DEGREE: M.B.B.Ch., Faculty of Medicine – 6 October University

(2013)

DIRECTOR: Prof. Dr. Ihab Fouad Serag Eldeen Allam Academic Position: Professor of Obstetrics & Gynecology **Department:** Obstetrics & Gynecology - Ain Shams University

Co-DIRECTOR: Prof. Dr. Abdellatif Galal El Kholy
Academic Position: Professor of Obstetrics & Gynecology
Department: Obstetrics & Gynecology - Ain Shams University

Co-DIRECTOR: Dr. Gihan El Sayed El Hawwary

Academic Position: Lecturer of Obstetrics & Gynecology

Department: Obstetrics & Gynaecology - Ain Shams University

Faculty of Medicine Ain Shams University 2018

What is already known on this subject? AND What does this study add?

Recurrent pregnancy loss (RPL) is one of the most frustrating and difficult areas in reproductive medicine because the etiology is often unknown. Endocrine factors may account for 15 to 60 percent of RPL. Pre-gestational diabetes is associated with an elevated risk of pregnancy loss, but it is unclear whether subclinical glucose intolerance is associated with pregnancy loss or not, especially recurrent pregnancy loss (RPL). This study compares maternal serum fructosamine in patients with and without RPL.

1.INTRODUCTION/ REVIEW

Recurrent pregnancy loss (RPL) is one of the most frustrating and difficult areas in reproductive medicine because the etiology is often unknown and there are few evidence-based diagnostic and treatment strategies. Studies on the etiology, evaluation, and management of RPL are often flawed (*Christiansen et al.*, 2005).

The definition of RPL varies, which makes studying the phenomenon, and determining which couples to counsel or treat, more challenging. As examples, varying definitions have included:

- Two or more failed clinical pregnancies as documented by ultrasonography or histopathologic examination (ASRM, 2013).
- Three consecutive pregnancy losses, which are not required to be intrauterine (*RCOG*, 2011).

In response to these varied definitions, the European Society of Human Reproduction and Embryology released a 2014 consensus statement proposing that RPL describes repeated pregnancy loss, regardless of anatomic location, but they did not recommend the number of losses required for the problem to be defined as recurrent (*Kolte et al.*, 2015).

RPL can be further divided into primary or secondary processes. Primary RPL refers to pregnancy loss in women who have never carried to viability. In contrast, secondary RPL refers to pregnancy loss in a

woman who has had a previous live birth. The prognosis for successful pregnancy is better with secondary RPL (*Paukku et al.*, 1999).

Couples who have had a pregnancy loss have two major concerns: the cause and the risk of recurrence. Unfortunately, the cause of RPL can be determined in only 50 percent of patients (*Abramson and Stagnaro*, 2001).

Once a woman has a history of two unexplained miscarriages, she and her partner should be evaluated for factors associated with RPL. According to the American Society for Reproductive Medicine's guidelines from 2012, the standard evaluation consists of screening for a maternal or paternal translocation, structural uterine factors, antiphospholipid syndrome, diabetes mellitus, PRL abnormalities, and thyroid disorders. (ASRM, 2012)

One method to assess subclinical diabetes is by testing biomarkers correlated with glucose tolerance such as fructosamine. Fructosamine is an indicator of mean blood glucose similar to glycated hemoglobin (HbA1c). Instead of measuring HbA1c, the fructosamine assay measures glycated serum proteins such as albumin. Fructosamine can be related to blood glucose using the following formula: fructosamine =(HbA1c-1.61)×58.82.4, thus for every 16-mg/dL rise in mean blood glucose (0.5% rise in HbA1c), there is a corresponding 20-µmol/mL rise in fructosamine. Because of the rate of turnover of the relevant glycated proteins, the fructosamine level represents serum glucose averaged over 1–3 weeks. In addition, unlike HbA1c, fructosamine can be reliably measured in frozen/thawed serum samples (*Delgado et al.*, *2011*).

Pre-gestational diabetes is associated with an elevated risk of pregnancy loss, but it is unclear whether subclinical glucose intolerance is associated with pregnancy loss or not, especially recurrent pregnancy loss (RPL) (*Jauniaux et al.*, 2006).

2.AIM / OBJECTIVES

- 1. **Research hypothesis:** In women with RPL there may be no association with subclinical glucose intolerance.
- **2. Research question:** In women with RPL is there any association with subclinical glucose intolerance??