

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EFFECT OF GRAPHENE NANOPLATES (GNPS) COATED AG ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AL-CU ALLOY

By

Reham Ahmed Hany Elmetwally

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Mechanical Design and production Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

EFFECT OF GRAPHENE NANOPLATES (GNPS) COATED AG ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AL-CU ALLOY

By

Reham Ahmed Hany Elmetwally

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Mechanical Design and production Engineering

Under the Supervision of

Prof. Dr. Abdelhaleem Elhabak

Professor of Mechanical engineering
Mechanical Design And Production
Department

Faculty of Engineering, Cairo University

Dr. Omayma elkady

Assistant Professor
Central Metallurgical Research And
Development Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

EFFECT OF GRAPHENE NANOPLATES (GNPS) COATED AG ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AL-CU ALLOY

By Reham Ahmed Hany Elmetwally

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Mechanical Design And Production Engineering

Prof. Dr. Abdelhaeem M. Elhabak	Thesis Main Advisor
Examining Committee	
Approved by the	

Prof. Dr Mahmoud Adly, Internal Examiner

- Faculty of engineering, fayoum university

Prof. Dr. Mohamed Fahmy,

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

External Examiner

Engineer's Name: Reham Ahmed Hany Elmetwally

Date of Birth: 05/11./1992. **Nationality:** Egyptian

E-mail: Rehamhany212gmail.co,

Phone: 01061160555

Address: 387 hah, Hadayek Elahram, Giza

Registration Date: 01/10/2015. **Awarding Date:**/2020 **Degree:** Master of Science

Department: Mechanical Design And Production Engineering

Supervisors:

Prof. Abdelhaleem Mohamed Abdelhaleem Elhabak

Prof. Omayma Elkady

Examiners:

Prof. Abdelhaleem Elhabak (Thesis main advisor)
Prof. Mahmoud Adly (Internal examiner)
Prof. Mohamed Fahmy (External examiner)
(Faculty of Engineering Fayoum University)

Title of Thesis:

Effect of graphene nanoplates (GPNs) coated Ag on microstructure and mechanical properties of Al-cu alloy

Key Words:

Aluminum; Copper; Nano graphene; Powder metallurgy; friction

Summary:

This thesis studies the Mechanical and tribological Properties of pure Aluminum nano powder, Aluminum Copper and Aluminum Copper Graphene with various volume fraction of the reinforcement material. The used reinforcement material is Graphene Nanoplates (GNPs) with various content (0.4%, 0.6%, 1.2% and 1.8%) while the copper has 15% percentage of the composite. The electroless deposition technique was investigated by coating the GNPs with Ag then precipitate the Cu on its surface. Many of tests are applied on the obtained samples such as SEM, Xrd, density, stress tests of Hardness and compression to determine the highest reinforcement percentages that can accomplish the most suitable characteristics.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Reham Ahmed Hany Elmetwally Date: //2020

Signature:

Dedication

This thesis is dedicated with love and affection to my parents.

Acknowledgments

I thank all who in one way or another contributed in the completion of this thesis. First, I give thanks to God for protection and ability to do work.

I would first like to thank my thesis advisors Prof. Dr. Abd Elhalim El Habak Faculty of Engineering at Cairo University. The doors to his office were always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this research to be my own work, but steered me in the right direction whenever they thought I needed it.

I would also like to acknowledge Dr. Omaima Elkady Central Metallurigical Research and development institute, and Dr. Hossam Mohamed Yehia Bahnsay Lecturer at Faculty of Technology and education, Helwan University for his effort and his time for me.

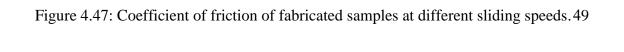
I would also like to acknowledge Prof. Dr. Mahmoud Adly Faculty of Engineering at Cairo University, and Prof. Dr. Mohamed Fahmy Faculty of Engineering at Elahram Canidian University as the examiners of this thesis, and I am gratefully indebted to them for their valuable comments on this thesis.

Finally, I also thank in advance my family who encouraged me and prayed for me throughout the time of my research. And special thanks to my best friend Noha Yehia for her faith in me.

May the Almighty God richly bless all of you.

Table of Contents

LIST O	F TABLES	V
LIST O	F FIGURES	VII
ABSTRA	ACT	VIII
СНАРТ	ER 1: INTRODUCTION	1
1.1.	OVERVIEW	1
1.2.	COMPOSITE MATERIALS	
1.2.	1. Classification of material	1
1.2.	.2. The advantages of composite	2
1.3.	METAL MATRIX COMPOSITE	2
1.3.1	The main advantages of MMC over PMCs and CMCs	3
1.3.2		
1.4.	THE REINFORCING PHASE	3
1.5.	ALUMINUM MATRIX COMPOSITE	4
1.6.	AL NANO PARTICLES	5
1.6.1		
1.6.2		
1.7.	COPPER NANO POWDER	7
1.7.1	Synthesis of copper nano powder	7
1.8.	GRAPHENE	
1.8.1	Properties of graphene	9
1.8.2		
1.8.3	S. Application of graphene	11
1.9.	INTRODUCTION TO POWDER METALLURGY	12
1.9.1	. making powder metallurgy an important commercial	13
1.9.2	PM production drawbacks and disadvantages	13
1.9.3	Production of Metallic Powders	13
1.10.	ELECTROLESS DEPOSITION	13
1.11.	HOT PRESSING	14
1.12.	OBJECTIVE	
1.13.	THESIS LAYOUT	16
СНАРТ	ER 2 : LITERATURE REVIEW	16
2.1.	Introduction	16
2.2.	LITERATURE REVIEW	16
СНАРТ	ER 3 : EXPERMENTAL WORK	27
3.1.	Introductio	27
3.2.	MATERIAL	27
3.2.1		
3 3	MANITEACTIDING OF AL-CU/GNDS NANO COMPOSITE	20


3.3.1.	The first step is electroless silver deposition on graphene surface	29
3.3.2.	The second step is electroless copper deposition	30
3.3.3.	The third step is electroless copper deposition on graphene	32
3.3.4.	The fourth step is mixing	34
3.3.5.	The final step is hot pressing	35
3.4.	COMPOSITES CHARACTERIZATION	36
3.4.1.	Density measurements	36
3.4.2	Metallographic investigation	36
3.4.3.	XRD measurement	37
3.4.4.	Hardness test	37
3.4.5.	Wear test	
3.4.5.	compression test	38
СНАРТЕ	R 4 : RESULT AND DISCUSSION	40
4.1.	XRD OBSERVATION	40
4.2.	DENSITY MEASURMENTS	41
4.3.	MICROSTRUCTURE	41
4.4.	HARDNESS MEASURMENT	44
4.5.	COMPRESSIVE STRENGTH	44
4.6.	WEAR TEST	46
4.7.	WEAR MECHANISM AND COEFFICIENT OF FRICTION (COF)	47
СНАРТЕ	R 5 : CONCLUSIONS	50

List of Tables

Table 2.1: Relative density, hardness, compressive power and nanocomposite	18
Table 2.2: Densities, densification, and Vickers hardness measurements	22
Table 2.3: The results of Vickers hardness of pure aluminum and its composites	24
Table 2.4: The mean yield power values, absolute tensile strength and elongation	24
Table 3.5: The supplied material	27
Table 3.6: Composition of the nanocomposites	34
Table 4.7: Density of the fabricated nanocomposites	41
Table 4.8: Micro-Hardness of fabricated samples	44
Table 4.9 Ultimate compressive Strength fabricated samples UTS (Mpa)	46

List of Figures

Figure 1.1: The family of composites [3]	2
Figure 1.2: Different physical shapes of imbedded phases	4
Figure 1.3: A rock tumbler Ball mills [6]	
Figure 1.4: Schematic image (laser ablation)	
Figure 1.5: Classification of synthesis techniques	
Figure 1.6: Schematic illustration of graphene [13]	8
Figure 1.7: a) and b) Scan of electron microscope images	
Figure 1.8: Molecular models representing the transferring process	
Figure 1.9: Collection of powder metallurgy parts	
Figure 1.10: Hot pressing scheme [17]	
Figure 2.11: Effect of GNPs content on compressive strength and strain[18]	.16
Figure 2.12: Effect of GNPs content on microhardness	
Figure 2.13: Sliding wear rate of Al-Al2O3 and Al-Al2O3/GNPs composites	
Figure 2.14: Friction coefficients of Al-Al2O3 and Al-Al2O3/GNPs composites	
Figure 2.15: SEM micrographs of the (a) B, (b) C, and (c)	. 19
Figure 2.16: Changes in wear rates of the coatings	.20
Figure 2.17: Mass loss observed for selected PM Al alloys	.20
Figure 2.18: Mass loss observed for selected PM Al alloys	
Figure 2.19: The variation of wear losses with wearing time for Al–5Al2O3	
Figure 2.20: (a) Compression stress– strain curves	
Figure 2.21:Nanocomposite stress-strain compression curves	.23
Figure 2.22: The variance of yield strength tendencies and ultimate tensile	.24
Figure 2.23: Tensile characteristics of GNSs/Cu composites	
Figure 2.24: Vickers hardness of GNSs/Cu composites	
Figure 2.25: Variation of wear rate and Coefficient of friction	.26
Figure 2.26: Variation of friction coefficient with the variation of normal load	.26
Figure 4.27: SEM (BSE) and TEM of used raw materials	.29
Figure 3.28: electroless silver deposition on GNPs	.30
Figure 3.29: electroless Copper deposition	
Figure 3.30: precipitation of Copper by electroless deposition on GNPs surface	
Figure 3.31: Hot plate magnetic stirrer	
Figure 3.32: Ball milling Machine	.34
Figure 3.33: A uniaxial hydraulic press	.35
Figure 3.34: Engineering drawing scheme for punch and die	.35
Figure 3.35: Grinding and polishing machine model "Buhlertm"	.36
Figure 3.36: Scanning Electron Microscope SEM (QUANTAFEG250)	.37
Figure 3.37: The X-ray diffractometer	
Figure 3.38: Hardness device (Leco LM70-USA)	.38
Figure 3.39: Wear test machine (PLINT & PATRNERS ltd)	
Figure 3.40: HT-9501 computer servo hydraulic universal testing machine	
Figure 4.41: X-ray diffraction of hot pressed materials	.40
Figure 4.42: SEM (BSE) of hot pressed materials	
Figure 4.43: EDS mapping of Al-15 wt% Cu/1.8 wt% GNPs chemical composition.	
Figure 4.44: Compression stress-strain curves	
Figure 4.45: Variation of Al wear rate with the addition of 15 wt%Cu	
Figure 4.46: SEM (BSE) worn surfaces	.48

