

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MODELING AND SIMULATION OF ALKALINE ETHANOL-AIR FUEL CELL STACK

By

Shimaa Mohamed Ali Abdela Obaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

MODELING AND SIMULATION OF ALKALINE ETHANOL-AIR FUEL CELL STACK

By Shimaa Mohamed Ali Abdela Obaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Salam	Ahmed Mahmoud Ismail
Professor of Chemical Engineering department Faculty of Engineering, Cairo University	Associate Professor Chemical Engineering department Faculty of Engineering, Cairo University
Asc.Prof. Fatma I	brahim Sayed
Associate Pr	ofessor

Chemical engineering department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

MODELING AND SIMULATION OF ALKALINE ETHANOL-AIR FUEL CELL STACK

By Shimaa Mohamed Ali Abdela Obaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee		
	r. Omar El farouk Abdel Salam, Thesis Main Advisor	
	r. Ibrahim Mohamed Ahmed Mahmoud, Advisor	
	r.Mohamed Hanafy Mahmoud Sayed, Internal Examiner	
Prof. D - C	r. Ahmed Mohamed Awad Abouelata, External Examiner hemical engineering and pilot plant department at National Research center NRC)	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Shimaa Mohamed ali abdela obaid

Date of Birth: 11/04/1991 **Nationality:** Egyptian

E-mail: Shimaamohamed_60@yahoo.com **Phone:** 01122341699-01011195179

Address: Newcairo. 5th settlement. 1st neighborhood. 5th area.

Street 41. Villa 114

Registration Date: 1/10/2014
Awarding Date:/.2020
Degree: Master of Science
Department: Chemical Engineering

Supervisors:

Prof. Dr.Omar El Farouk Abdel Salam

Prof. Dr. Ibrahim Mohamed Ahmed Mahmoud

Asc.Prof. Fatma Ibrahim Sayed

Examiners:

Prof. Dr. Ahmed Mohamed Awad (External examiner) Chemical engineering and pilot plant department at

National Research center (NRC)

Prof. Dr.Mohamed Hanafy (Internal examiner) Prof. Dr.Omar El Farouk (Thesis main advisor)

Prof. Dr.Ibrahim Mohamed Ahmed mahmoud (advisor)

Title of Thesis:

Modeling and simulation of alkaline ethanol-air fuel cell stack.

Kev Words:

Modeling of fuel cell; ethanol-air fuel cell stack; alkaline alcohol fuel cell.

Summary:

- Ethanol-air fuel cell is a new technology for energy-conversion which provide high efficiency with pollution —free operation. The performance of alkaline ethanol-air fuel cell stacks was simulated using simple model based on thermodynamics, kinetics and mass transfer considerations. The mathematical model is tested by experimental data used in a previously published paper.
- In mathematical model, the increase in concentration of electrolyte with constant concentration of the fuel, the cell performance increases initially then decrease. This result is close to the experimental data. In mathematical model, the increase in concentration of fuel with constant concentration of the electrolyte, the cell performance slightly changes because of the consumption of fuel with increase in current density isn't taken into consideration .The result in experimental paper, the maximum power density =50mW/cm2 at current density at 17 mA/cm2 but The result in mathematical model, the maximum power density =46.5mW/cm2 at current density at 20 mA/cm2

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in reference section.

Name:

Signature:

Date: .../.... /2020

ACKNOWLEDGEMENT

First, I would like to thank my supervisor, Professor **DR. OMAR EL FAROUK**, whose expertise was extremely valuable in formulating the research questions and methodology. His insightful feedback pushed me to sharpen my thinking and brought my work to a higher level. He has provided me with constant encouragement, patience, and guidance at different stages of my research, and his enthusiasm for research combined with his wonderful work ethic have taught me to greatly appreciate his depth of knowledge.

I would also like to thank my tutors, **ASC.PROF Dr. FATMA IBRAHIM**, for her valuable guidance throughout my studies. She provided me with the tools that I needed to choose the right Path and successfully complete my dissertation. Her guidance helped me in all the time of research and writing of this thesis.

I would like to express my very great appreciation to Professor **DR. IBRAHIM MOHAMED** for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

In addition, I would like to thank my family and my husband for their wise counsel sympathetic ear, providing the required atmosphere for my study, and for their total support. Mainly, I'd like to give the credit of this work to my parents as they provide everything whether in their abilities or over in order for this work to come to light.

TABLE OF CONTENTS

DISCLAMIR	I
ACKNOWLEDGEMENT	VI
TABLE OF CONTENT	III
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VI
NOMENCLATURE	VII
ABSTRACT	VIII
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1 Introduction	
2.2.1 Combustion Engine	3
2.2.2 Batteries	4
2.2.3 Fuel Cell	5
2.2.3.1 The History Of The Fuel Cell	5
2.2.3.2 Classification Of The Fuel Cell	6
1. Alkaline Fuel Cell	6
2. Phosphoric Acid Fuel Cell	8
3. Molten Carbonate Fuel Cell	9
4. Solid Oxide Fuel Cell	10
5. Polymer Electrolyte Membrane Fuel Cell	11
2.2.3.3 Types Of Fuels	12
I. Hydrogen	12
Ii. Methanol	13
Iii. Ethanol	13
Iv. Ethylene Glycol	13
2.2.3.4 Advantage Of Fuel Cell	14
2.2.3.5 Disadvantage	14
2.3 Why Alkaline Fuel Cell?	

	CHAPTER 3: CONCEPT OF MODELING	19
	3.1 Introduction	
	3.2.1 Ideal Voltage At Variable Concentration (Nerset Equation)	. 19
	3.2.2 Kinetics Of Alkaline Fuel Cell.	20
	3.3 EXPERIMENTAL PAPER	21
	3.3.1 Experimental Data	21
	3.3.2 Operation Of The Fuel Cell	22
	CHAPTER 4: RESULT AND DISCUSSION	23
	4.1 Introduction	23
	4.1.1Assumptions	23
	4.1.2Thermodynamics Voltage	23
	4.1.3 Ohmic Over Potential	25
	4.1.4Concentration Over Potential	26
	4.1.5 Activation Over Potential	29
	4.1.6 Undesired Losses At Electrode	30
	4.2 STUDYING THE EFFECT OF EACH PARAMETER ON THE REAL VOLTAGE FUEL	
C	ELL	30
	4.2.1 Concentration Of Potassium Hydroxide	30
	4.2.2Concentration Of Ethanol.	32
	4.2.3Temperature	32
	CHAPTER 5: CONCLUSION AND RECOMMENDATION	33
	REFERENCES	36
	APPENDIX A. RESHLT TARLES	30

List of Tables

Table 1 The Comparison Between The Four Types of Fuel	14
Table 2 The Comparison Between Combustion Engine, Batteries and Fuel cell	
Table 3 the design of the fuel cell	21
Table 4 Gibbs Free Energy Of Some Substance And Number Of Moles	23
Table 5 The Constants In Conductivity Equation	26
Table 6 The Constants In Density of Ethanol Equation	27
Table 7 The Constants In Viscosity of Water Equation	27
Table 8 The Parameters In Concentration Over Potential Equation	27
Table 9 The Parameters In Binary diffusion coefficient equation	28
Table 10 The Parameters In activation over potential equation	29

List of Figures

Fig. 1 The Components of The Hydrogen-Oxygen Fuel Cell	1
Fig. 2 Internal and External combustion engine	
Fig. 3 Battery Elements	
Fig. 4 Representatives of a Fuel Cell and It's Operation	5
Fig. 5 Mobile Electrolyte AFC's	
Fig. 6 Static electrolyte AFC'S	7
Fig. 7 Dissolved fuel AFC's	8
Fig. 8 Operation of Alkaline Fuel Cell	8
Fig. 9 The Operation of PFC	9
Fig. 10 The CO ₂ Recycling Process in MCFC	10
Fig. 11 The Operation of MCFC	10
Fig. 12 The Operation of SOFC	11
Fig. 13 The Operation of PEMFC	12
Fig. 14 Specific Energy and Energy Density vs. Pressure for Hydrogen Gas Tank	13
Fig. 15 Comparison Between Heat Engine, Battery and Fuel cell	15
Fig. 16 The Relation Between Voltage And Current Density	19
Fig. 17 Mass Transport Develops At The Anode Of An Operating H2–O2 Fuel Cell	21
Fig. 18 Schematic of direct alcohol alkaline fuel cell stack of four cells	22
Fig. 19 The Effect Of Concentration Of Potassium Hydroxide At Constant	
Concentration Of Ethanol = 1M	31
Fig. 20 The Effect Of Concentration Of Potassium Hydroxide At Constant	
Concentration Of Ethanol = 2M	31
Fig. 21 The Effect Of Concentration Of Potassium Hydroxide At Constant	
	32
Fig. 22 The Effect Of temperature at Concentration Of Potassium Hydroxide =3M At	
Constant Concentration Of Ethanol = 2M	
Fig. 23 Comparison Between Modelling And Experimental	34

Nomenclature

Symbol	Quantity
V	Real voltage
E	Ideal Voltage
A_p , A_R	Activity of products, Activity of reactant
n	Number of electrons
F	Faraday Number
P_i , P_t	Partial Pressure Of substance (i), where i=Water, Carbon Dioxide and oxygen, Total pressure.
X_i	Mole Fraction Of substance (i), where i=Water, Carbon Dioxide and oxygen
C_{i}	Concentration Of substance (i), where i=Water, Carbon
C_{i}	Dioxide, oxygen and Ethanol
η_{Act}	Activation over potential
η_{Conc}	Concentration over potential
η_{Ohmic}	Ohmic over potential
AFC	Alkaline fuel cell
PEMFC	Polymer electrolyte membrane fuel cell
MCFC	Molten carbonate fuel cell
SOFC	Solid oxide fuel cell
PAFC	Phosphoric acid fuel cell (PAFC)
PTFE	Poly tetra Fluoro Ethylene

Abstract

Ethanol-air fuel cells are emerging new technologies for energy-conversion which provide high efficiency, modular structure and pollution –free operation. The performance of alkaline ethanol-air fuel cell stacks was simulated using simple model based on thermodynamics, kinetics and mass transfer considerations ,and the model was tested using published experimental data "Development of a Direct Alkaline Fuel Cell Stack"[1]. The effects of ethanol concentration, potassium hydroxide concentration, current density and temperature, on cell stack voltage and power density were studied. The calculated cell potentials and power densities match well with experimental data within reasonable accuracy in spite of the simplicity of the model. The model can be used for both design, optimization and process control. The model in spite being simple and taking into consideration the experimental error and the model assumption, it can be used within reasonable accuracy for estimation of optimum operating condition and maximum power output.