

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY



#### Role of Cerebro-Placental Ratio in Prediction of Perinatal Outcome in High-Risk Pregnancies with Intrauterine Growth Restriction

#### Thesis

Submitted for Partial Fulfilment of Master Degree in **Obstetrics and Cynecology** 

#### By

#### Esraa Hamdy Mohammed Mohammed

M.B.B.Ch – Ain Shams University – 2014 Resident at Obstetrics and Gynecology Department, El Salam Specialised Hospital, Cairo

Under Supervision of

#### **Prof. Mohamed Ahmed Hassan El-Kady**

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

#### Dr. Ebtihal Mohamed Eltaieb

Lecturer in Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020



سورة البقرة الآية: ٣٢

### Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Mohamed Ahmed Wassan El- Xady,** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Ebtihal Mohamed Eltaieb**, Lecturer in Obstetrics and Gynecology, Faculty of
Medicine, Ain Shams University, for her sincere efforts,
fruitful encouragement.

I am deeply thankful to **Dr. Sally Ahmed Refaat Xotb,** Fellow at Ultrasound Special Care Unit for the Fetus,

Maternity hospital Ain Shams University, for her great help.

Words are not enough to thank the **Patients who shared**in this study in order to achieve the best care for them.

Finally, I would like to thank my family for their great efforts and support throughout this work and my whole life.

Esraa Hamdy Mohammed

### Tist of Contents

| Title                                    | Page No. |
|------------------------------------------|----------|
| List of Tables                           | 5        |
| List of Figures                          | 7        |
| List of Abbreviations                    | 9        |
| Introduction                             | 1 -      |
| Aim of the Work                          | 14       |
| Review of Literature                     |          |
| Doppler Ultrasounds                      | 15       |
| ■ Intrauterine Growth Restriction (IUGR) | 30       |
| Gestational Hypertension                 |          |
| Patients and Methods                     |          |
| Results                                  |          |
| Discussion                               |          |
| Summary                                  |          |
| Conclusion                               |          |
| Recommendations                          |          |
| References                               |          |
| Arabic Summary                           |          |

### Tist of Tables

| Table No  | o. Title                                                                   | Page No.     |
|-----------|----------------------------------------------------------------------------|--------------|
| Table 1:  | Apgar Scoring System                                                       | 78           |
| Table 2:  | Comparison between the studied gregarding demographic characteristics      | -            |
| Table 3:  | Comparison between the studied gregarding CPR                              | <del>-</del> |
| Table 4:  | Comparison between the studied gregarding perinatal outcomes               |              |
| Table 5:  | Agreement between low CPR and C fetal distress                             |              |
| Table 6:  | Diagnostic charactersites of low CI predicting CS                          |              |
| Table 7:  | Agreement between low CPR and APGAR                                        |              |
| Table 8:  | Diagnostic characteristics of low CI predicting low APGAR                  |              |
| Table 9:  | Agreement between low CPR and meccaspiration                               |              |
| Table 10: | Diagnostic charactersites of low CI predicting meconium aspiration         |              |
| Table 11: | Agreement between low CPR and hy ischemic encephalopathy                   |              |
| Table 12: | Diagnostic charactersites of low CI predicting hypoxic ischemic encephalog |              |
| Table 13: | Agreement between low CPR and admission                                    |              |
| Table 14: | Diagnostic charactersitcis of low CI predicting NICU admission             |              |

### Tist of Tables cont...

| Table No  | o. Title                                                      | Page No.  |
|-----------|---------------------------------------------------------------|-----------|
| Table 15: | Agreement between low CPR and no death                        |           |
| Table 16: | Diagnostic charactersitcis of low C predicting neonatal death |           |
| Table 17: | Agreement between low CPR and still                           | birth 105 |
| Table 18: | Diagnostic characteristics of low C predicting still birth    |           |

## List of Figures

| Fig. No.   | Title                                                                                                               | Page No.  |
|------------|---------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 1:  | Continuous wave Doppler ultrasound                                                                                  | l16       |
| Figure 2:  | Pulsed Doppler Ultrasound Wave                                                                                      | 17        |
| Figure 3:  | Color flow imaging effects of pulse refrequency or scale (left) the pulse refrequency or scale is set low (yellow a | epetition |
| Figure 4:  | Ultrasound image with color showing the umbilical cord, red u artery and blue umbilical vein (left)                 | ımbilical |
| Figure 5:  | Normal flow velocity waveforms frumbilical vein (top)and artery (botto weeks of gestation                           | m) at 32  |
| Figure 6:  | Normal umbilical artery waveform                                                                                    | 24        |
| Figure 7:  | Lost diastolic blood flow                                                                                           | 24        |
| Figure 8:  | Reversed end diastolic blood flow                                                                                   | 24        |
| Figure 9:  | Normal umbilical artery waveform                                                                                    | 25        |
| Figure 10: | Transverse view of the fetal head w<br>Doppler showing the circle of Willis                                         |           |
| Figure 11: | Middle cerebral artery Doppler                                                                                      | 26        |
| Figure 12: | Diagnostic algorithm for work-up i fetuses                                                                          |           |
| Figure 13: | Progression of fetal growth restriction                                                                             | n55       |
| Figure 14: | Middle Cerebral Artery Pulsatility<br>Reference values                                                              |           |
| Figure 15: | Umbilical artery Pulsatility Index R values                                                                         |           |
| Figure 16: | CPR Reference values                                                                                                | 77        |

### Tist of Figures cont...

| Fig. No.   | Title                                                                  | Page No. |
|------------|------------------------------------------------------------------------|----------|
| Figure 17: | Comparison between the studied regarding CPR.                          |          |
| Figure 18: | Comparison between the studied regarding perinatal outcomes            | · -      |
| Figure 19: | Diagnostic charactersitcis of low predicting CS                        |          |
| Figure 20: | Diagnostic charactersitcis of low predicting low APGAR                 |          |
| Figure 21: | Diagnostic charactersitcis of low predicting meconium aspiration       |          |
| Figure 22: | Diagnostic charactersitcis of low predicting hypoxic ischemic encephal |          |
| Figure 23: | Diagnostic charactersitcis of low predicting NICU admission            |          |
| Figure 24: | Diagnostic characteristics of low predicting neonatal death            |          |
| Figure 25: | Diagnostic characteristics of low predicting still birth               |          |

### Tist of Abbreviations

| Abb.        | Full term                                               |
|-------------|---------------------------------------------------------|
| AC          | Abdominal Circumference                                 |
| ACOG        | American Collage of Obstetrics                          |
| ARDEV       | Absent or Reversed End Diastolic Velocity               |
| <i>BPD</i>  | Biparietal Diameter                                     |
|             | Biophysical Profile                                     |
| <i>CMV</i>  | Cytomegalovirus                                         |
| <i>CPR</i>  | Cerebro-placental Ratio                                 |
| CRL         | Crown Rump Length                                       |
| CS          | Cesarean section                                        |
| <i>EDV</i>  | End Diastolic Velocity                                  |
| <i>EFW</i>  | Expected Fetal Weight                                   |
| FGR         | Fetal Growth Restriction                                |
| FHR         | Fetal Heart Rate                                        |
| FL          | Femur length                                            |
| <i>GA</i>   | Gestational Age                                         |
| HC          | Head Circumference                                      |
| HELLP       | Haemolysis, Elevated Liver Enzymes and<br>Low Platelets |
| <i>IUGR</i> | Intra Uterine Growth Restriction                        |
| <i>LMP</i>  | Last Menstrual Period                                   |
| MCA         | Middle Cerebral Artery                                  |
| NICU        | Neonatal Intensive care Unite                           |
| <i>NPV</i>  | Negative Predictive Value                               |
| PI          | Pulsatility Index                                       |

### Tist of Abbreviations cont...

| Abb.       | Full term                          |
|------------|------------------------------------|
| PIH        | Pregnancy Induced Hypertension     |
| PPV        | Positive Predictive Value          |
| PW         | Pulsed Waves Doppler               |
| <i>RI</i>  | Resistance Index                   |
| S/D        | Systolic/Diastolic Ratio           |
| SGA        | Small for Gestational Age          |
| TCD        | Transverse cerebellar diameter     |
| <i>UA</i>  | Umbilical Artery                   |
| <i>UAV</i> | Umbilical Artery Velocimetry       |
| <i>US</i>  | Ultra sound                        |
| <i>USG</i> | Ultrasonography                    |
| VEGF       | Vascular Endothelial Growth Factor |

#### Introduction

ntrauterine growth restriction (IUGR) is defined as sonographic estimated fetal weight below 10th percentile for gestational age (*Sharma et al., 2016*). According to the American College of Obstetricians and Gynecologists, IUGR is "one the most common and complex problems in modern obstetrics (*ACOG, 2012*).

This characterization is understandable considering the various published definitions, poor detection rate, limited preventive or treatment options, multiple associated morbidities, and increased likelihood of perinatal mortality associated with IUGR. Suboptimal growth at birth is linked with impaired intellectual performance and diseases such as hypertension and obesity in adulthood (*Devaskar and Chu*, 2016).

Current challenges in the clinical management of IUGR include accurate diagnosis of the truly growth-restricted fetus, selection of appropriate fetal surveillance, and optimizing the timing of delivery. Despite the potential for a complicated course, antenatal detection of IUGR and its antepartum surveillance can improve outcomes (*McCowan et al.*, 2018).

It is important to synthesize and assess the strength of evidence of the current literature regarding the use of Doppler velocimetry of the umbilical artery and middle cerebral artery for non-anomalous fetuses with suspected IUGR, and to provide



recommendations regarding antepartum management of these pregnancies, in particular for singleton gestations (Baschat, 2005). It has been acknowledged that defining small for gestational age (birthweight below 10th percentile for gestational age) by general population charts vs customized charts is an important issue, but this is not the focus of this clinical opinion (Gardosi and Francis, 2009; Schlaudecker et al., 2017).

Intrauterine growth restriction (IUGR) is an indicator of the increased risk of perinatal and long-term mortality and morbidity when compared to those born with normal growth. There is a considerable difference in the incidence of IUGR across different populations. In babies born with a birth weight less than 2500 gms, its prevalence is almost 33%. The incidence of IUGR shows a dependence on economic growth too, with a relatively lower incidence in developed countries (4-8%) as compared to that in developing countries (6%-30%) (Cosmi et al., 2011).

The average incidence of IUGR is nearly 8% in the general population. In nearly 35%-40% of the cases, IUGR is the consequence of an abnormal condition. Factors like placental insufficiency, maternal hypertension, cardiovascular disease. infections, low diabetes. socioeconomic status, previous history and preeclampsia are some of the known risk factors for IUGR (Albu et al., 2014).

Poor pregnancy outcome has shown a strong link with IUGR; more than half the stillbirths are associated with IUGR