

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Preparation and characterization of polyester resin for solvent based printing inks applications

Thesis

Submitted by

Mohamed Hashem Mohamed Bakr

(M.Sc. Chemistry)

2014

For the Degree of

Doctor of philosophy [Ph.D]

(In Chemistry)

To

Chemistry Department

Faculty of Science

Ain Shams University

Faculty of Science Chemistry Department

Approval Sheet

Name of the Candidate: Mohamed Hashem Mohamed Bakr

This thesis has been approved for submission by supervisors:

Thesis supervisors

Approved

Dr. Mohamed Ahmed Mekewi

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Dr. El-said Helmy Mohamed El-Mosallamy

Asso. Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University

Dr. Mahmoud Abd El-Rahman Ibrahim

Research and Development Manager, DEGLA Chemicals Co., Cairo, Egypt

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgment

I would like to express my sincere gratitude to my principal supervisor, **Dr. Mohamed Ahmed Mekewi**, for helping structuring the present research project, his guidance, support and patience throughout my PhD studies and the thesis finalization.

I am also grateful to **El-said Helmy Mohamed El-Mosallamy** for his valuable supervision and helpful suggestions.

My sincere thanks also go to **Dr. Mahmoud Abd El-Rahman Ibrahim** for providing me with all the support needed, knowledge, and skills throughout the course of my work which will benefit me for many years to come.

My deep thanks to Dr. Ahmed Abo-Elwafa the owner of Degla Chemicals Company for letting me accomplish this PHD.

My special gratefulness is due to my parents and my fiancee for their encouragement, support, and patience to fulfill my study.

"I DEDICATE THIS WORK TO THEM"

Finally, I would like to thank members of the research team *Ahmed Sayed* and *Mohamed Abd ElAziz* for creating an enjoyable working environment.

Mohamed Hashem Mohamed Bakr

Contents

		Page no.
	List of tables	i
	List of figures	ii
	List of abbreviations	v
	CHAPTER 1	
	INTRODUCTION	
1.1	Printing inks	1
1.2	Types of printing inks	1
1.3	Composition of printing inks	2
1.4	Types of resins used in printing inks	4
	1.4.1 Natural resins	4
	1.4.2 Synthetic resins	5
1.5	Hyperbranched polymers	13
	1.5.1 Historical background of hyperbranched polymers	14
	1.5.2 Special features of hyperbranched polymers	16
	1.5.3 Synthesis methodologies of hyperbranched polymers	19
1.6	Polyesters	32
	1.6.1 History of polyesters	32
	1.6.2 Methods of polyesters synthesis	34

	1	1.6.3 Types of polyesters	43
	1	1.6.4 Applications of hyperbranched polyesters in coatings	46
		CHAPTER 2	
		EXPERIMENTAL	
2	.1 (Chemicals	55
2	.2 \$	Synthesis of polyester resins	57
	2	2.2.1 Lab assembles used for preparation of polyester resins	57
	2	2.2.2 Procedure for preparation of polyester resins	58
2	.3 (Characterization of the prepared polyester resins	62
	2	2.3.1 FTIR analysis	62
	2	2.3.2 Molecular weight analysis	62
	2	2.3.3 Acid value (AV)	62
	2	2.3.4 Hydroxyl value (OHV)	63
	2	2.3.5 Viscosity	64
	2	2.3.6 Solubility	64
2	.4 (Characterization of the printed ink films	64
	2	2.4.1 Ink formulation	64
	2	2.4.2 Dry film thickness	65
	2	2.4.3 Curl test	66
	2	2.4.4 Adhesion test	66

	2.4.5 Heat sealing test	67	
	2.4.6 Gloss measurement test	68	
	2.4.7 Color measurements	68	
	CHAPTER 3		
	RESULTS AND DISCUSSION		
3.1	Fourier Transformed Infrared (FTIR) analysis	67	
	3.1.1 FTIR analysis of acids	67	
	3.1.2 FTIR analysis of polyalcohol	79	
	3.1.3 FTIR analysis of the prepared polyester resins	87	
3.2	Molecular Weight analysis	101	
3.3	Physicochemical properties studies	106	
	3.3.1 Acid value and hydroxyl value	106	
	3.3.2 Viscosity and solubility	109	
3.4	Characterization of the printed films	111	
	3.4.1 Dry film thickness	111	
	3.4.2 Curl test	111	
	3.4.3 Adhesion test	111	
	3.4.4 Heat Sealing test	112	
	3.4.5 Gloss measurement test	114	
	3.4.6 Color measurements	114	
	Conclusion	117	
	References	120	

List of Tables

Item	Title	Page
		no.
Table 1	History of hyperbranched polymers	15
Table 2	Synthesis approaches for preparation of hyperbranched polymers	20
Table 3	Chemicals used in the synthesis of the prepared polymers	55
Table 4	Sample codes with reactant monomers of the prepared polyester resins	61
Table 5	Reference sample formulation	65
Table 6	Proposed 50% replacement sample formulation	65
Table 7	GPC data of the prepared polyester resins	102
Table 8	Acid values and hydroxyl values of the prepared polyesters	108
Table 9	Viscosity and solubility of the prepared polyester resins	110
Table 10	Mechanical properties of printing inks with prepared polyester resins	113
Table 11	Color measurements of printing inks with prepared polyester resins	116

List of Figures

Item	Title	Page
		no.
Figure 1	World printing ink end user by market in 2012	1
Figure 2	Pattern technique of (1) relief, (2) flat, (3) gravure, and	2
	(4) stencil printing	
Figure 3	Composition of printing inks by %	2
Figure 4	Schematic diagram of dendritic polymers	13
Figure 5	Diverse applications of HBPs	14
Figure 6	Graphical correlation between Mw and [η] for	17
	different macromolecules	
Figure 7	Schematic mechanism of hyperbranched polymers	22
	from AB ₂ monomer	
Figure 8	Schematic mechanism of the self-condensing vinyl	24
	polymerization	
Figure 9	Schematic mechanism of self-condensing ring-	25
	opening polymerization	
Figure 10	Schematic mechanism of proton-transfer	27
	polymerization	
Figure 11	Schematic representation of A ₂ + B ₃ polymerization	28
Figure 12	Schematic mechanism of hyperbranched polymers	30
	from CMM	
Figure 13	Structural unit of ester group	32
Figure 14	Schematic mechanism of PET polymerization process	36
	from TPA or DMT and EG	