

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A LOW-POWER SUB-SAMPLING ALL-DIGITAL PHASE-LOCKED LOOP WITH FAST FREQUENCY-CORRECTION CAPABILITY

Ву

Omar Hamada Eid Seif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

A LOW-POWER SUB-SAMPLING ALL-DIGITAL PHASE-LOCKED LOOP WITH FAST FREQUENCY-CORRECTION CAPABILITY

By

Omar Hamada Eid Seif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Nader Mohieldin Prof. Mohamed Mostafa Aboudina

Professor

Associate Professor

Electronics and Communications Engineering Faculty of Engineering, Cairo University Electronics and Communications Engineering Faculty of Engineering, Cairo University

A LOW-POWER SUB-SAMPLING ALL-DIGITAL PHASE-LOCKED LOOP WITH FAST FREQUENCY-CORRECTION CAPABILITY

By

Omar Hamada Eid Seif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Ahmed Nader Mohieldin, Thesis Main Advisor

Prof. Hassan Mostafa Hassan, Internal Examiner

Prof. Mohamed Amin Dessouky, External Examiner

Professor
Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

Engineer's Name: Omar Hamada Eid Seif Hassan

Date of Birth: 28/03/1994 Nationality: Egyptian

E-mail: omarhamada8@gmail.com

Phone: 01141056158

Address: 6th of October City, Giza, 12563

Registration Date: 01/03/2017Awarding Date: -/-/2020

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Ahmed Nader Mohieldin Prof. Mohamed Mostafa Aboudina

Examiners:

Prof. Ahmed Nader Mohieldin (Thesis Main Advisor)
Prof. Hassan Mostafa Hassan (Internal Examiner)
Prof. Mohamed Amin Dessouky (External Examiner)

Professor

Faculty of Engineering, Ain Shams University

Title of Thesis:

A Low-Power Sub-Sampling All-Digital Phase-Locked Loop with Fast Frequency-Correction Capability

Key Words:

All-digital PLL; Lock-in range extension; Time to Digital Converter; Multi-Path; Digital to Time Converter.

Summary:

In this thesis, a low-power all-digital phase-locked loop (ADPLL) is presented to be used as a frequency synthesizer in low-power applications. The PLL utilizes sub-sampling operation to maintain low power consumption. A novel technique is proposed to extend the loop's lock-in range. This technique allows the loop to tolerate 10x larger frequency disturbances without losing locking. The main analog blocks are designed in a 40nm CMOS technology. A new time to digital converter (TDC) architecture based on a multi-path delay line is introduced. The new architecture allows the TDC to achieve high resolution while keeping a low power consumption. An 8-bit segmented digital to time converter (DTC) is designed. The DTC achieves relatively good linearity while consuming low power. A low-power digitally-controlled oscillator (DCO) is implemented and it achieves better than -114dBc/Hz phase noise at 1MHz offset. The estimated PLL phase noise at 1MHz offset is around -109dBc/Hz.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Omar Hamada Hassan	Date:
Signature:	

Dedication

To my mother and father for their continuous love and support.

Acknowledgements

First and foremost, praise is to Allah, the most gracious, the most merciful, on whom ultimately we depend for sustenance and guidance.

I would like to express my gratitude to my advisors Prof. Ahmed Nader and Prof. Mohamed Aboudina for their help and support throughout the thesis. They motivated me to explore new ideas and come with creative solutions to the problems that we faced. I am also grateful to Prof. Faisal Hussien for spending hours discussing technical details with me. This work would not have been possible without his support. I learned a lot from him technically and personally, and he has always been an inspiration to me.

I am also thankful to my longtime friend Kareem Rashed for helping me out with some of the thesis work. We started our analog design adventure together a few years ago and he has been a good companion during this adventure.

Of course, one can't live without a lovely family. I would like to thank my father, my mother, my sister Ola, and my brother Assem. They have been always there for me and I am deeply indebted to them for the rest of my life. I am also thankful to all my colleagues at Si-Vision especially Mahmoud Abdelwahab, Hesham Ahmed, Ahmed Refaat, and Ahmed Ghareeb for their continuous help and valuable suggestions.

Pursuing an M.Sc. degree at Cairo University has been a fulfilling journey to me and I hope that one day this work will become the seed for something much bigger and better.

Table of Contents

D	isclai	mer						j
Dedication								ii
Acknowledgements								iii
Ta	able (of Con	tents					iv
Li	\mathbf{st} of	Table	5					vii
Li	\mathbf{st} of	Figur	es					ix
Li	st of	Symb	ols and Abbreviations					xiv
Li	st of	Publi	cations					xvi
\mathbf{A}	bstra	ıct						xvii
1	INT	NTRODUCTION						
	1.1	IoT G	rowth					. 1
	1.2	Techn	ology Scaling					. 3
	1.3	Why .	ADPLL?					. 4
	1.4	Thesis	S Overview					. 6
2	$\mathbf{A}\mathbf{D}$	PLL S	YSTEM					7
	2.1	ADPI	L Architectures					. 7
		2.1.1	Phase-Domain ADPLL					. 7
		2.1.2	Divider-based ADPLL					. 9
		2.1.3	Divider-based ADPLL with DTC					. 11
		2.1.4	Sub-sampling ADPLLs					. 13
	2.2	Imple	mented ADPLL System					. 17
	2.3	Syster	n Modeling					. 21
		2.3.1	Phase-Domain Model					. 21
		2.3.2	Time-Domain Model					. 27

3	PR	OPOS	ED DISTURBANCE CORRECTION	2 9	
	3.1	Distu	rbance Correction Techniques	31	
		3.1.1	Lock-in Range Extension	31	
		3.1.2	Phase Unwrap	32	
	3.2	Propo	osed Fast Disturbance Correction	33	
		3.2.1	Principle of Operation	33	
		3.2.2	Disturbance Correction Implementation	35	
		3.2.3	Simulation Results	38	
4	TIN	ие тс	D DIGITAL CONVERTER	41	
	4.1	TDC	Performance Metrics	41	
		4.1.1	Resolution	41	
		4.1.2	Differential Non-linearity	42	
		4.1.3	Integral Non-linearity	42	
		4.1.4	Range	42	
		4.1.5	Offset	42	
		4.1.6	Figure of Merit	42	
	4.2	TDC Architectures			
		4.2.1	Conventional Delay Line TDC	43	
		4.2.2	Pseudo Differential Delay Line TDC	44	
		4.2.3	Vernier Delay Line TDC	45	
		4.2.4	Time Amplifier TDC	46	
		4.2.5	Ring Oscillator TDC	48	
	4.3	Propo	osed Multi-Path Delay Line TDC	50	
		4.3.1	Basic Principle of Operation	50	
		4.3.2	Implementation of the Proposed TDC	52	
		4.3.3	Proposed Offset Calibration Scheme	55	
		4.3.4	Schematic Results	56	
		4.3.5	TDC Layout	59	
			4.3.5.1 Multi-Path Delay Stage	59	
			4.3.5.2 Sense Amplifier	60	
			4.3.5.3 SR Latch	60	
			4.3.5.4 Cap Bank Unit	61	

			4.3.5.5 5-bit Cap Bank	61			
			4.3.5.6 Stop Path	62			
			4.3.5.7 Input Buffers	63			
			4.3.5.8 Reference Voltage Generator	63			
			4.3.5.9 Full TDC Layout	63			
		4.3.6	Summary	65			
5 DIGITAL TO TIME CONVERTER							
	5.1	DTC	Performance Metrics	67			
		5.1.1	Resolution	67			
		5.1.2	Differential Non-linearity	68			
		5.1.3	Integral Non-linearity	68			
		5.1.4	Range	68			
		5.1.5	Offset	68			
	5.2	DTC .	Architectures	68			
		5.2.1	Variable-Slope DTCs	69			
		5.2.2	Constant-Slope DTCs	71			
	5.3	Imple	mented DTC	73			
	5.4	5.4 Simulation Results					
		5.4.1	High-Power Mode	76			
		5.4.2	Low-Power Mode	79			
6	DIC	GITAL	LY CONTROLLED OSCILLATOR	84			
	6.1	DCO	Performance Metrics	85			
		6.1.1	Tuning Range	85			
		6.1.2	Output Voltage Amplitude	85			
		6.1.3	Gain	85			
		6.1.4	Frequency Resolution	86			
		6.1.5	Phase Noise	86			
		6.1.6	Figure of Merit	86			
	6.2	Oscilla	ator Architectures	87			
		6.2.1	Ring Oscillators	87			
		622	Cross-Coupled LC Oscillators	80			

			6.2.2.1	NMOS LC Oscillator	90
			6.2.2.2	CMOS LC Oscillator	91
		6.2.3	Fine Fre	equency Tuning in DCOs	92
			6.2.3.1	LSB Dithering	92
			6.2.3.2	DAC-Based DCO	94
			6.2.3.3	Realization of Ultra-Small Capacitance Step	95
	6.3	DCO	Implemen	tation	95
7	COI	NCLU	SION A	ND FUTURE WORK	105
	7.1	System	n Integrat	zion	105
	7.2	Conclu	usion		107
	7.3	Future	e Work		108
\mathbf{R}	eferei	nces			109
\mathbf{A}	ppen	$\operatorname{dix} \mathbf{A}$	MATLA	AB CODES FOR PHASE-DOMAIN MODEL	113
	A.1	Phase-	-Domain 1	Model	115
	A.2	Phase	Noise to	Jitter Conversion	120
\mathbf{A}	ppen	dix B	VERILO	OGA CODES FOR TIME-DOMAIN MODEL	121
•	B.1			ator	121
	B.2			ller	122
	В.3	Buffer			126
	B.4				127
	B.5	DLF			130
	B.6	DTC			131
	B.7	DTC	Control W	Word Calculation	132
	B.8	Phase	Incremen	tor	134
	B.9	Loop	Gain Norı	malization	135
	B.10	Sampl	er		136
	B.11	Synch	ronous Ac	dder	137
	B.12	TDC			138
	B 13	TDC	Output C	orrection	140

List of Tables

2.1	.1 Loop parameters and specifications of the system blocks used in the				
	phase-domain model	24			
4.1	TDC comparison with state-of-the-art TDCs	65			
5.1	DTC comparison with state-of-the-art DTCs	83			
6.1	Properties of the DCO inductor	95			
6.2	DCO comparison with state-of-the-art LC oscillators	104			
7.1	ADPLL comparison with state-of-the-art ADPLLs	106			