

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT PERFORMANCE OF PILED RAFT IN CLAY

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

CIVIL ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT By

OSAMA AHMED AHMED ABDEL-AZIM

Supervised by

Prof. Yasser El-Mossallamy

Professor of Geotechnical
Engineering
Structural Department
Faculty of Engineering
Ain Shams University

Dr. Khalid Abdel-Rahman

Deputy Head of Institute of Geotechnical Engineering (IGtH), Leibniz University Hannover - Germany

Cairo - 2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Osama Ahmed Ahmed Abdel-Azim

Thesis : Performance of Piled Raft in Clay

Degree : Master of science in civil engineering (Structural)

EXAMINERS COMMITTEE

Name and Affiliation	Signature
Prof. Ashraf Elashal Professor of Geotechnical Engineering Ministry of Water Resources and Irrigation	
Prof. Mohamed Monir Morsy Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Prof. Yasser El-Mossallamy	
Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University	
Date: 29/3/2020	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Osama Ahmed Ahmed Abdel-Azim
Thesis : Performance of Piled Raft in Clay

Degree : Master of science in civil engineering (Structural)

SUPERVISORS COMMITTEE

Name and Affiliation	Signature
Prof. Yasser El-Mossallamy Professor of Geotechnical Engineering	
Structural Department Faculty of Engineering Air Shame University	
Ain Shams University Dr. Khalid Abdel-Rahman	
Deputy Head of Institute of Geotechnical Engineering (IGtH)	
Leibniz University Hannover - Germany	
Date: 29 /3/2020	

Date: 29/3/2020

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2020

College Board Approval

University Board Approval

/ 2020

/ 2020 /

CURRICULUM VITAE

Name Osama Ahmed Ahmed Abdel-Azim

Date of Birth 10, June 1990

Place of Birth Egypt

Scientific degree B.Sc. of Structural Engineering, Faculty of

Engineering, Ain Shams University, 2014

Current Job Demonstrator of Geotechnical Engineering

and Foundations, Structural Engineering Department, Faculty of Engineering, Ain

Shams University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Name: Osama Ahmed Ahmed Abdel-Azim

Signature:

Date: 29 /3/ 2020

ACKNOWLEDGMENT

First and foremost, thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Dr. Yasser El-Mossallamy, Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication and encouragement kind supervision.

My grateful appreciation also extends to Dr. Khalid Abdel-Rahman, Deputy Head of Institute of Geotechnical engineering (IGtH), Leibniz University Hannover, Germany for his fruitful comments and valuable advice throughout this research till its completion which is gratefully acknowledged and sincerely appreciated.

Most important, my deepest thanks and love for my father, mother, brothers for constant and everlasting support which is the reason of being able to finish this research.

ABSTRACT

The piled raft foundation is one of the most economic foundation systems for many cases especially for high rise building supported on stiff clay when this layer is deeply extended. In the piled raft system, the position and geometry of the piles are optimized in order to minimize settlement, differential settlements and consequently the sectional forces in the raft. North Delta characterized by normally consolidated soft clay with a relatively low stiffness extended down to about 50 m below ground surface in some cases. The purpose of this study is to investigate the behavior of piled raft as a foundation system for Frankfurt over-consolidated clay using a well-monitored "Messeturm" building. The foundation system was very complex; moreover, the design of the piled raft system will be investigated. The application of piled raft system in soft clay will be also investigated in terms of settlement, differential settlement and the negative skin friction along the piles to be compared with the traditional raft on piles. The numerical program used in analysis is Plaxis 3D finite element software using two constitutive laws: Mohr-Coulomb and Hardening soil model. The results show the suitability of Hardening soil model more than Mohr-Coulomb model. It was concluded that using piled raft solution in soft clay can be a smart solution to achieve serviceability and stability requirements by applying limited number of floating piles. The study predicts the negative skin friction along the floating piles and also presents an engineering evaluation for piled raft foundation technique. Finally, it is concluded that traditional piled deep foundation is not the optimum solution for many cases in soft clay.

Keywords: Piled raft, Frankfurt, Port said, Soft clay.

SUMMARY

The piled raft system is one of the most important systems in the last decades. The purpose of this research is to check the application of piled raft system in stiff clay as well as in soft clay after introducing the available methods for analysis of piled raft system for different case studies.

The methodology of analysis is the finite element method using Plaxis 3D software implementing Mohr-Coulomb and Hardening Soil constitutive models. The numerical model has been calibrated using a well monitored "Messeturm" high rise building in Germany supported by Frankfurt over-consolidated clay. A study of the application of piled raft in soft clay compared with traditional piled raft system in view of settlement, differential settlement, piles type and capacity and the engineering value will be discussed.

The thesis consists of six chapters:

Chapter (1) is an introduction to this research; it discusses the importance, the scope and the main objectives of the research.

Chapter (2) is a literature review which briefly summarizes the different methods of analysis piled raft system; also, it presents the previous monitored piled raft systems in different soil conditions.

Chapter (3) presents a brief discussion about finite element method and the different constitutive laws to simulate the different elements of the piled raft foundations system.

Chapter (4) presents the verification of the numerical modeling using two cases: conceptual simplified case and "Messeturm" high rise building in Frankfurt, Germany.

Chapter (5) discusses a characterization of North Delta clay; with a static pile load test in Port Said soft clay. It presents also application of piled raft system compared with the traditional raft on piles for a water treatment tank exist east of Al Tafreah-Port Said.

Chapter (6) discusses the conclusions conducted from this research and the recommendations for the future studies.

TABLE OF CONTENTS

CURRI	CULUM VITAE	iv
STATE	MENT	V
ACKNO	OWLEDGMENT	vi
ABSTR	ACT	vii
SUMM	ARY	viii
TABLE	OF CONTENTS	X
LIST O	F FIGURES	X
NOME	NCLATURE	xvii
CHAPT	TER (1)	1
1.1 Ge	eneral Background	1
1.2 Sc	ope of the Study	2
1.3 Sp	ecific Objectives of the Study	2
1.4 Oı	ıtlines of the Thesis	3
CHAPT	TER (2)	4
2.1 In	troduction	4
2.2 M	ethods of analysis of piled raft	5
2.2.1	Simplified analysis methods	6
2.2.2	Approximate Computer-based Method	11
2.2.3	Advanced computer methods (Numerical Methods)	13
2.3 Ap	oplications of piled raft	17
	Application of piled raft in view of structure type	
2.3.2	Recent works in view of the soil type	33
СНАРТ	TER (3)	44
3.1	Introduction	44
3.2	Piled raft elements	44
3.2.1	Raft	44
3.2.2	Soil	44

3.2.2.	1 Mohr-Coulomb Model	45
3.2.2.	2 Hardening Soil Model	46
3.2.3	Pile	50
СНАРТ	TER (4)	53
4.1 Int	roduction	53
4.2	Frankfurt clay	53
4.3	Single Pile (Katzenbach et al, 1998)	56
4.4	Case Study	65
4.4.1	Description	65
4.4.2	Numerical Model	69
4.4.2.1	Mohr-Coulomb Model	73
4.4.2.2	Hardening Soil Model	74
4.5. Co	onclusions	84
СНАРТ	TER (5)	85
5.1. In	troduction	85
5.2. G	eological and Geotechnical Characterization	85
5.3. Pi	le load test case study	94
5.4.	Water treatment tank in East of AL Tafreah	98
5.4.1	Description of the problem	98
4.3.2	Subsoil Description	99
5.4.3	The Numerical Modeling	102
5.5 Co	nclusions	126
СНАРТ	TER (6)	127
6.1.	Conclusions	
6.2.	Recommendations for Future Studies	129
	ices	
	ملخص رسالة الماجستير في العلوه	
	مستخلص رسالة الماجستير في العلوه	

LIST OF FIGURES

Figure 2-1: Piled raft principles (after El-Mossallamy, 1999) 4
Figure 2-2: Load- Settlement Curve using different design considerations
(after Poulos and Van Imp, 2001)6
Figure 2-3: Load- Settlement Curve for Preliminary Analysis
Figure 2-4 Load- Design concept of Burland's approach
Figure 2-5: Piled raft analysis using GASP (after, Poulos, 1991)
Figure 2-6: Messe Torhaus (after Sommer, 1985)
Figure 2-7: Measured Load-settlement curve (after Sommer, 1985) 18
Figure 2-8: Observed Load taken by piles (after Sommer, 1986) 19
Figure 2-9: Observed Load and skin friction distribution with depth 19
Figure 2-10: Observed Load sharing for raft and pile with time
Figure 2-11 : DG-Bank (after El-Mossallamy, 1994)
Figure 2-12: Measured Load-settlement curve
Figure 2-13: City tower (after, Katzenbach 2004)
Figure 2-14: Load settlement curve (after, Katzenbach, 2004)
Figure 2-15: Treptowers (after Katzenbach, 1999)
Figure 2-16: Load settlement curve (after Katzenbach, 1999)
Figure 2-17: Japan Center (after El-Mossallamy, 1996)
Figure 2-18: Performance of piled raft and raft
Figure 2-19: Salimia Complex (after El-Mossallamy, 2006)
Figure 2-20 : Traditional raft on piles foundation system plan
Figure 2-21: Piled raft foundation system plan (after El-Mossallamy, 2006)
Figure 2-22: Mirax Plaza Building (after, De Gijt 2009)
Figure 2-23: Load settlement curve of Tower A
Figure 2-24: Settlement Contour from Finite element simulation (after De
Gijt, 2009)
Figure 2-25: Settlement Contour from Finite element simulation (after De
Gijt, 2009)
Figure 2-26: Exhibition Hall (after Katzenbach, 2004)
Figure 2-27: Exhibition Hall frame supported horizontally by piled raft
(after, Katzenbach 2004)
Figure 2-28: Load Settlement Curve for Experimental and Numerical
Results (after Wasiem, 2015)
Figure 2-29: Effect of pile spacing/pile diameter on (a) avg. settlement ratio
and (b) differential settlement ratio (after Shivanand, 2018)
Figure 2-30: Effect of pile length/pile diameter on (a) avg. settlement ratio
and (b) differential settlement ratio (after Shivanand, 2018)