Assessment of Hepatic Steatosis Before and After Treatment In Egyptian HCV Patients Treated With DAAs Using Non Invasive Parameters

Thesis

Submitted for Partial Fulfillment of MD Degree
In Internal Medicine

By

Mariam Wagih Nagib Gerges

Master degree in Internal Medicine Faculty of Medicine- Ain Shams University

Supervised By:

Prof. Dr. Tareg Mohamed Yosef

Professor of Internal Medicine and Gastroenterology Faculty of Medicine- Ain Shams University

Prof. Dr. Wesam Ahmed Ibrahim

Professor of Internal Medicine and Gastroenterology Faculty of Medicine- Ain Shams University

Dr. Sarah Abdel Kader El-Nakeep

Assistant professor of Internal Medicine and Gastroenterology Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohamed El Ghandour

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2020

List of Contents

Title	Page No.
List of abbreviations	I
List of figures	VI
List of tables	VIII
Introduction	1
Aim of work	4
Review of literature:	
Chronic Hepatitis C	5
• Hepatic Steatosis and Fibrosis	18
• Chronic Hepatitis C treatment	53
Patients and methods	80
Results	94
Discussion	116
Summary	127
Conclusion	132
References	133
Arabic summary	

List of Abbreviations

AST/ALT ratio AAR **AFP** Alpha Fetoprotein **ALT** Alanine aminotransferase **ANA** Anti-nuclear antibodies **ApoB** Apolipoprotein B **ApoE** Apolipoprotein E **APRI** AST/platelet ratio **ARFI** Acoustic radiation force impulse imaging **AST** Aspartate aminotransferase **AUC** Area under the ROC curve **AUROC** ... Area Under the Receiver Operating Characteristics **BMI** Body mass index **CAP** Controlled attenuation parameter **CBC** Complete blood count **CCR5** C-C chemokine receptor 5 **CHC** Chronic hepatitis C **CPK** Creatinine phosphokinase **CT** Computed Tomography **CTP** Child-Turcotte-Pugh **CYP** Cytochrome P450 CYP3A Cytochrome P450 3A

CypA Cyclophilin A

DAA Direct acting antivirals

DCV Daclatasvir

DCV Daclatasvir

DM Diabetes Milletus

EASL...... The European Association for the Study of the Liver

ECM Extracellular matrix

EGF..... Epidermal growth factor

eGFR Estimated glomerular filtration rate

EGFR Epidermal growth factor receptor

ELISA The enzyme-linked immunosorbent assay

EphA2 Ephrin receptor A2

FDA Food and Drug Administration

FIB-4 Fibrosis 4 score

GGenotype

GGT Gammaglutamyl transferase

GT Genotype

Hb..... Hemoglobin

HbA1C Hemoglobin A1C

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HDL High density Lipoproteins

HF Heart failure

HIV Human immunodeficiency virus

HOMA-IR Homoeostatic model assessments

HSC Hepatic stellate cells

IFG Impaired fasting glycemia

IFN Interferon

IL28B Interleukin 28B

INR International Normalized Ratio

IQR Interquartile range

IQR/M..... Interquartile range/Median

IU/ml International Units Per Millilitre

kPa Kilo-Pascal

LDL Low density Lipoproteins

LDV..... Ledipasvir

LLOQ Lower Limit Of Quantitation

LS Liver stiffness

MELD Model for End-Stage Liver Disease

METAVIR Meta-analysis of Histological Data in Viral Hepatitis

miR-122.... microRNA-122

MMP Matrix metalloproteinases

MMP-2 Matrix metalloproteinase 2.

MRE Magnetic Resonance Elastography

NAFL Nonalcoholic fatty liver

NAFLD Non Alcoholic Fatty Liver Disease

NASH Nonalcoholic steatohepatitis

NEFA Non-esterified fatty acids

NFS NAFLD fibrosis score

NIBMs..... Noninvasive Biomarkers

NIMs Non invasive markers

NNPI Non-nucleoside polymerase inhibitor.

NPIs...... Nucleoside polymerase inhibitors

NPV Negative predictive value

NS5A Nonstructural protein 5A

NS5B Nonstructural protein 5B

OATP Organic Anion Transporting Polypeptides

PCR Polymerase chain reaction

PDGF Platelet-derived growth factor

PEG..... Pegylated

 $peg\text{-}IFN\alpha$. Pegylated interferon- α

P-gp P-glycoprotein

PIs Protease inhibitors

PLT Platelet

PPARγ Peroxisome proliferators-activated receptor γ

PPV Positive predictive value

RBV Ribavirin

RNA...... Ribonucleic acid

ROI Region of Interest

ROS Reactive oxygen species

S.Chol Serum Cholesterol

S.cr Serum creatinine

SD Standard deviation

SMAs Smooth- muscle antibodies

SOC Standard-of-care

Sof Sofosbuvir

SREBP1 .. Sterol regulatory element binding protein 1

SVR Sustained Virological Response

SWE Shear wave elastography

T3 Triiodothyronine

T4..... Thyroxine

TE Transient Elastography

TG Triglycerides

TGF Transforming growth factor

TIMPs Tissue inhibitor of metalloproteinases

TSH..... thyroid-stimulating hormone

T. Bil. Total bilirubin

ULN Upper limit of normal

US Ultrasound

VCTE Vibration-controlled transient elastography

VEGF Vascular endothelial growth factor

WBC...... White blood cells

List Of Figures

Fig. No.	Title	Page No.
Figure (1):	Life cycle of the hepatitis C virus: Sche overview of the life cycle of the hepat virus (HCV)	itis C
Figure (2):	Genome organization of HCV	9
Figure (3):	Global distribution of hepatitis C genotypes	
Figure (4):	Multiple parallel hit theory and progress NASH	
Figure (5):	Mechanisms of hepatic fibrogenesis possible molecular serum biomarkers	
Figure (6):	Role of Hepatic stellate cells in fibrogenesis	
Figure (7):	Mechanism of action of direct acting antifor hepatitis C virus	
Figure (8):	Pelvi-abdominal ultrasound device and p	robe85
Figure (9):	Fibroscan device	86
Figure (10):	Technique and probe position of Fibrosca	an87
Figure (11):	Flexible upper endoscopy	88
Figure (12):	Comparison between the studied gregarding PLT, AST, ALT and HDL before treatment	levels
Figure (13):	Comparison between the studied gregarding APRI score before treatment	

Figure (14):	Comparison between the studied groups regarding PLT, AST and ALT levels at SVR12
Figure (15):	Comparison between the studied groups regarding serum TG and HDL levels at SVR12
Figure (16):	Comparison between the studied groups regarding NAFLD score at SVR12107
Figure (17):	Box plot of NAFLD score at SVR12 across the studied groups
Figure (18):	Comparison between all patients in this study regarding PLT, AST, ALT and S. albumin levels before treatment and at SVR12
Figure (19):	Comparison between all the patients in this study regarding the lipid profile before treatment and at SVR12
Figure (20):	Comparison between all patients in this study regarding NAFLD and APRI scores and Fibroscan median before treatment and at SVR12

List Of Tables

Table No.	Title Page No.	•
Table (1):	Child–Turcotte–Pugh score	5
Table (2):	Contraindications of liver biopsy30)
Table (3):	Advantages and disadvantages of liver elasticity-based US techniques)
Table (4):	Advantages and limitations of liver biopsy and noninvasive fibrosis markers	2
Table (5):	AUROC for the indirect markers used in assessment of liver fibrosis in patients with chronic hepatitis C 45	
Table (6):	Characteristics of different DAAs classes 61	l
Table (7):	Different studies for Sofosbuvir in treatment of chronic HCV	5
Table (8):	Child-Turcotte-Pugh (CTP) score82	2
Table (9):	Quantitative PCR for HCV RNA91	l
Table (10):	Comparison between the studied groups regarding baseline data before treatment 96	5
Table (11):	Comparison between the studied groups regarding baseline data before treatment 98	3
Table (12):	Comparison between the studied groups regarding NAFLD and APRI scores and Fibroscan results before treatment100	
Table (13):	Comparison between studied groups after treatment (at SVR12) 102	2

Table (14):	Comparison between studied groups after treatment
Table (15):	Comparison between the studied groups regarding NAFLD and APRI scores and Fibroscan results after treatment
Table (16):	Comparison between all studied patients' data before and after treatment
Table (17):	Comparison between all studied patients' data before and after treatment
Table (18):	Comparison between all studied patients regarding NAFLD and APRI scores and Fibroscan results before and after treatment 112
Table (19):	The statistical significant data on comparing fibroscan with the other data in this study before treatment
Table (20):	The statistical significant data on comparing fibroscan with the other data in this study after treatment

Abstract

Background: Hepatitis C virus (HCV) is a major health problem worldwide. More than one million people die each year from hepatitis C virus (HCV) related diseases.

Aim of the Work: to evaluate the effect of direct acting antiviral drugs on hepatic steatosis in naïve HCV chronically infected Egyptian patients after reaching SVR12.

Patients and Methods: study was carried out on 100 treatment naive patients with chronic infection of HCV attending the outpatient clinic. The patients were diagnosed having HCV by detecting HCV antibodies by ELISA & PCR for HCV RNA at The Gastroenterolgy and Hepatology Department, Ain Shams University and Kobry El Koba Military Hospital between August 2017 till February 2019.

Results: The mean TG, mean s. cholesterol and APRI Score decreased significantly showing a high statistical significant difference between baseline and SVR12. The mean HDL and LDL significantly increased showing a high statistical significant difference between baseline and SVR12. NAFLD Score increased from baseline to SVR12 showing a statistical significant difference in NAFLD Score between baseline and SVR12. Fibroscan median mean decreased showing a highly statistical difference in Fibroscan Median between baseline and SVR12. Out of 100 patients, cirrhosis regressed to F3 in 33 patients, F2 in 3 patients and didn't regress to F1 in any patient, while the majority (43 patients) remained as F4 at SVR12.

Conclusion: APRI Score mean and Fibroscan median mean were significantly decreased, while NAFLD Score was increased among the studied groups from baseline and SVR12.

Key words: Hepatic Steatosis, HCV, DAAs, Invasive Parameters

INTRODUCTION

Hepatitis C virus (HCV) infection is a common liver disease worldwide with a high rate of chronicity (75–80%) in infected individuals (*Jamak and Kianoush*, 2016).

Nowadays, interferon (IFN)-free direct-acting antiviral regimens have been developed for HCV treatment. Despite their cost, these direct-acting antiviral regimens are now the treatment of choice for all HCV genotypes. Sustained virologic response (SVR) at 12 weeks (SVR12), i.e., undetectable HCV RNA levels 12 weeks after completing treatment, is achieved in 90-95 % of non-cirrhotics, depending on genotype, treatment experience, and regimen used (Hartman et al., 2015 and Bailly et al., 2015). Comparable responses can be achieved in cirrhotics, but an extended treatment duration and/or ribavirin may be required based on the regimen (AASLD-IDSA, 2016). However, SVR12 may be achieved in only 80–85 % of decompensated cirrhotics with most regimens, although newer options approach SVR rates of 95 % (Foster et al., 2016 and Curry et al., 2015).

HCV uses host lipid metabolism for its lifecycle and can cause hepatic steatosis and insulin resistance (*Del Campo and Romero-Gomez*, 2009). Approximately 40–80 % of HCV-positive patients that are biopsied have steatosis,

Introduction

defined as excessive triglyceride deposition in hepatocytes (Asselah et al., 2006).

There are several factors which can affect the development of steatosis in chronic hepatitis C: (i) viral factor (HCV genotype3), (ii) host factors (alcohol consumption, overweight, hyperlipidemia, diabetes mellitus, insulin resistance) and (iii) drug therapy (corticosteroids, amiodarone, methotrexate etc.) (Asselah et al., 2006). Recent studies suggest that liver steatosis in chronic hepatitis C may be the expression of a direct cytopathic effect of hepatitis C virus (Castéra et al., 2004).

Currently, liver biopsy is the 'gold standard' for assessing the severity of hepatic fat deposition but biopsy is an invasive procedure and, in some patients, will result in complications such as internal bleeding, biliary leakage, hematoma formation, and infection. Up to 3% of patients require hospitalization after elective biopsy. The cost of biopsy is another important issue, this is why attention has shifted to non-invasive measures of hepatic fat detection (*Mazahar et al.*, 2009).

The APRI was developed by *Wai et al.* and is calculated based on AST levels and platelet counts. According to the results obtained in that study, the lower and upper cut-off values for the definition of significant fibrosis and cirrhosis are determined (*Wai et al.*, 2004). To evaluate

significant fibrosis, the following cut-off values are used: lower than 0.5 (absence of significant fibrosis, Ishak stage 0-2); and higher than 1.5 (presence of significant fibrosis, Ishak stage 3-6). To evaluate cirrhosis, different cut-off values are used. The absence of cirrhosis (Ishak stage 0-4) is defined as values lower than 1, and cirrhosis (Ishak stage 5-6) is defined as values higher than 2 [6]. The formula for calculating the APRI test is as follows (*Wai et al.*, 2003):

$$APRI = AST (/ULN) / Platelets (10^9/L) \times 100$$

NAFLD fibrosis score (NFS), developed in 2007 by Angulo et al., the authors determined that hyperglycemia, albumin, age, body mass index (BMI), platelet count, and aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio were solitary predictors of advanced fibrosis. They summarized that the NAFLD fibrosis score can accurately identify whether advanced fibrosis is present in NAFLD (*Angulo et al.*, 2007).

Fibroscan is a new method, which presents better results in various studies with respect to differentiating between cirrhotic and noncirrhotic patients. It is considered a quick and easy noninvasive procedure for diagnosing cirrhosis and has been presented as an alternative to liver biopsy in patients with a formal contraindication (*Sebastiani et al.*, 2006).