

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Corneal epithelial mapping in different corneal conditions

Thesis

Submitted for Partial Fulfillment of the Master Degree in Ophthalmology

By

Kholoud Mahmoud Soliman Selim

M.B.B.cH 2014 Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Fatma Mohamed El-Hennawi

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Hazem Mohamed Omar Mohamed Rashed

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Reham Fawzy El-Shinnawy

Lecturer of Ophtalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University Cairo, Egypt 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Fatma Mohamed El-Hennawi,**Professor of Ophthalmology Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Wazem Mohamed Omar Mohamed**Rashed, Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Reham Fawzy El-Shinnawy**, Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Kholoud Mahmoud Soliman Selim

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	2
Review of Literature	
Anatomy of Cornea	3
Anterior Segment OCT	9
Patients and Methods	17
Results	21
Discussion	33
Summary	41
Conclusion	43
References	44
Arabic Summary	_

List of Tables

Table No.	Title	Page No.
Table (1):	Shows average corneal epithelial to in different zones pre and 1 morphacoemulsification	nth post
Table (2):	It shows the difference between the CET in the control group and the scarring group.	corneal
Table (3):	It shows the difference between the CET in the control group a pterygium group.	and the

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of cornea	3
Figure (2):	Layers of cornea	4
Figure (3):	Histopathology of corneal epith Bowman's membrane	
Figure (4):	Electron Microscope image of graft, after researchers injected a separate the different layers of th	air in it, to
Figure (5):	High-definition OCT of the corn localization of the interface be corneal stroma and epithelial layer	tween the /Bowman's
Figure (6):	Showing difference between pterygium, recurrent pteryg pseudopterygium	ium and
Figure (7):	ZIESS 5000 cirrus HD OCT	19
Figure (8):	Show slit lamp photograph of pawhite cataract	
Figure (9):	Show CET before phacoemulsis	
Figure (10):	Show CET after phaco operation is	in OD24
Figure (11):	Shows a) slit lamp photograph scar, b)AS OCT pachymetry map	
Figure (12):	Shows a)slit lamp photograph, be pachymetry map, c)epithelial map of the patient d)epithelial map of a control of same age	thickness thickness
Figure (13):	Show slit lamp photo of left star	· ·
Figure (14):	Show CET in patient with pteryg	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (15):	Shows CET in a control	31
Figure (16):	Show HD Cornea Analysis of pterygium	-
Figure (17):	Shows a)slit lamp photograph with left pterygium, b) AS OCT map, c)epithelial thickness patient d)epithelial thickness control of the same age	pachymetry map of the map of a

List of Abbreviations

Abb.	Full term
CET	. Corneal epithelial thickness
CMTF	. Confocal microscopy through-focusing
CXL	. Corneal collagen crosslinking
ECM	. Extracellular matrix
ICRS	. Intrastromal corneal ring segment
MMPs	. Matrix metalloproteinases
OCT	. Optical coherence tomography
pIOL	. Phakic intraocular lens
SD	. Spectral domain
SD-AS-OCT	. Segment optical coherence tomography
TD	. Time domain
UBM	. Ultrasound biomicroscopy
VHFDU	. Very high frequency digital ultrasound

INTRODUCTION

The corneal epithelium plays an important role in the optics of the eye. It maintains the corneal integrity and function and influences tear film stability. The alterations of corneal epithelial thickness (CET) are found in many pathological conditions such as contact lens wearing, dry eye and keratoconus. Knowledge of the topographic CET profile and how it can change has been applied in clinical evaluation of various corneal disorders and in refractive surgery. Several imaging modalities, such as high frequency scanning ultrasound bio microscopy, confocal microscopy, and optical coherence tomography (OCT) have facilitated measurement of CET. Spectral domain anterior segment optical coherence tomography (SD-AS-OCT) has been reported as noninvasive, repeatable and reproducible method with higher scanning speed and resolution (Samy et al., 2017).

OCT has been developed for non-invasive crosssectional imaging in biological systems by using low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to Ultrasonic pulse-echo imaging. Spectral domain (SD), a newer generation OCT, seems to be reliable and reproducible enough to measure corneal epithelial thickness with sufficient axial resolution, in contrast to the measurements with the previous generation instruments based on time domain (TD)OCT (Zhou and Stojanovic, 2014).

AIM OF THE WORK

To study the corneal epithelial thickness in different corneal conditions using anterior segment optical coherence tomography.

Chapter 1

ANATOMY OF CORNEA

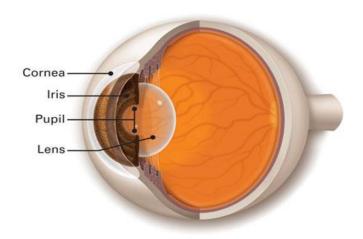


Figure (1): Anatomy of cornea (DelMonte and Kim, 2011).

Gross anatomy

The cornea is a transparent avascular tissue that acts as a structural barrier and protects the eye against infection as shown in figure 1 (*DelMonte and Kim*, 2011).

Along with the tear film, it provides proper anterior refractive surface for the eye. The cornea is horizontally oval, measuring 11–12 mm horizontally and 9–11 mm vertically (*Fares et al.*, *2011*).

Cornea is convex and aspheric. The anterior curvature is 7.8 mm and posterior curvature is about 6.5 mm. Cornea contributes to about 40–44 D of refractive power and accounts

for approximately 70% of total refraction. The refractive index of cornea is 1.376. There is a gradual increase in thickness from central cornea to the periphery (*Feizi et al.*, 2014).

Microscopic anatomy

The cornea is made up of cellular and acellular components. The cellular components include the epithelial cells, keratocytes, and endothelial cells. The acellular component includes collagen and glycosaminoglycans. The epithelial cells are derived from epidermal ectoderm. The keratocyte and endothelial cells are derived from neural crest. The corneal layers include epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium as showen in [Fig. 2]. Recently, a layer of cornea (Dua's layer) which is well defined, acellular in pre-Descemet's cornea is getting attention with the development of lamellar surgeries (*Dua et al., 2013*).

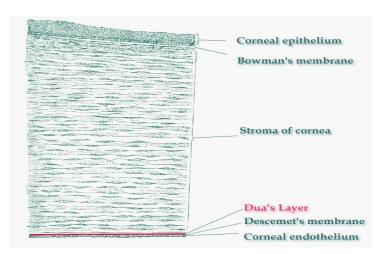


Figure (2): Layers of cornea (Dua et al., 2013).