

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

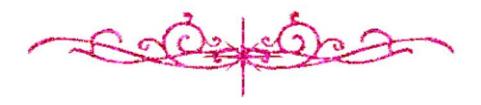
التوثيق الإلكتروني والميكروفيلم

قسم

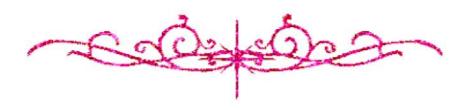
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار



بالرسالة صفحات لم ترد بالأصل



Computer Science Department
Faculty of Computer and Information Sciences
Ain Shams University

Deep Learning for Traits Detection Using Social Networks Interactions

A Thesis submitted to Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By:

Eman Mohammed Hamdi El-Sayed Ibrahim

Supervised by:

Prof. Dr. Mostafa Mahmoud Aref

Professor at Computer Science Department
Faculty of Computer and Information Sciences
Ain Shams University

Dr. Sherine Rady Abdel Ghany

Associate professor at Information Systems Department Faculty of Computer and Information Sciences Ain Shams University

Acknowledgment

First, I am grateful to Almighty ALLAH (S.W.T), the most Generous and the most Merciful. I thank God for providing me with strength and patience to complete this work.

Second, I would like to express my sincere gratitude to my supervisors; Prof. Dr. Mostafa Aref for his support, encouragement and guidance and Dr. Sherine Rady for all the support, patience and special supervision.

Third, I would like to thank my family and my husband for the love and care they give me constantly. Thank you for being with me through the good and the bad times.

My dear friends who have kept on encouraging me to get this work done; Eman Reda, Fatima El-Zahraa, Ghada Hamed, Hadeer Elsaadawy, Hanan Hindy and Marwa Salah. It was a precious journey with your companionship.

At last, I would like to thank all my professors, colleagues and students who believed in me. Thank you for being in my life.

Abstract

Social media networks are one of the main platforms used on a daily basis by millions of people. Feelings, emotions, and opinions are expressed by posting text, images, and videos to express self or to communicate with other people. Using text, the words reflect emotions and indicate behavior towards different topics. Detecting emotions and sentiments helps in many directions such that marketing, political orientation and product reviews. A huge amount of textual data is currently available. There is a need for detecting emotions from social media networks which enhances the machine understanding of humans' perspective.

This thesis contributes to detect positive and negative emotions from short text -tweets- by proposing a deep Convolutional Neural Network (CNN) using different types of word embeddings. CNN is the main building block of the proposed model and is responsible for extracting high-level features from low-level features. Word embeddings are the features fed to the model. The model is constructed by three CNN streams, where each CNN stream contains an embedding layer, a convolutional layer and a max-pooling layer. CNN streams are concatenated and followed by a fully connected layer for classifying text into a positive or a negative emotion class. The used textual features are different types of word embeddings including randomly initialized word embeddings and pre-trained word embeddings. The used pre-trained word embeddings are of different variants such as Word2Vec, Glove and fastText models. The word embeddings in both setups are

trainable and updated through the training phase. After training, the model learns relations between words and generates task-specific word embeddings.

The proposed model has been tested on the Stanford Twitter Sentiment (STS) dataset for classifying emotions. Experiments indicated that the achieved accuracy is 78.5% when using the randomly initialized word embeddings. The accuracy increases 3.6% when using fasttext pretrained word embeddings, 4.5% when using Glove pretrained word embeddings and 6.4% when using Word2Vec pretrained word embeddings. The best tuning for the model is when using Word2Vec pretrained word embeddings which achieves 84.9% accuracy. It is concluded that using CNNs in emotion detection from text is very promising as even when using randomly initialized word embeddings it achieves 78.5% accuracy without any external dataset. Also, not only randomly initialized word embedding can achieve good accuracy in emotion detection from text, it is proven that the power of the pretrained word embeddings helps to achieve a higher competitive accuracy in emotion detection from text.

Keywords: Deep Learning, CNN, Sentiment Analysis, Emotion Detection, Social Media Networks, Word Embeddings.

List of Publications

- 1- Eman Hamdi, Sherine Rady and Mostafa Aref, "A Survey on Mental Illness Detection using Language via Social Media Networks," Proceeding of The Seventeenth Conference on Language Engineering (ESCOLE), Cairo, Egypt, 2017.
- 2- Eman Hamdi, Sherine Rady and Mostafa Aref, "A Convolutional Neural Network Model for Emotion Detection from Tweets," Proceeding of The Fourth International Conference on Advanced Intelligent Systems and Informatics (AISI), vol. 845, pp. 337-346, Springer, Cairo, Egypt, 2018.
- 3- Eman Hamdi, Sherine Rady and Mostafa Aref, "A Deep Learning Architecture with Word Embeddings to Classify Sentiment in Twitter," Proceeding of The Sixth International Conference on Advanced Intelligent Systems and Informatics (AISI), vol. 1261, pp. 115-125, Springer, Cairo, Egypt, 2020.

Table of Contents

Acknowledg	mentII
Abstract	III
List of Publi	cationsV
Table of Con	ntentsVI
List of Figur	resIX
List of Table	esXII
List of Abbr	eviationsXIII
Chapter1: In	troduction2
1.1 Mo	tivation4
1.2 Pro	blem Definition5
1.3 Res	search Objectives5
1.4 The	esis Contributions6
1.5 The	esis Organization
Chapter 2:	Background and Related Work9
2.1 Bac	ckground9
2.1.1	Text Classification9
2.1.2	Sentiment Analysis
2.1.3	Machine Learning
2.1.3	.1 Supervised Learning
2.1.3	.2 Unsupervised Learning
2.1.3	.3 Semi-Supervised Learning
2.1.4	Artificial Neural Networks
2.1.5	Convolutional Neural Networks

2.1.6 Wo	ord Embeddings	25
2.1.4.1	Word2vec Word Embeddings	26
2.1.4.2	Glove Word Embeddings	26
2.1.4.3	fastText Word Embeddings	26
2.1.7 Tra	nsfer Learning	27
2.2 Related	Work	29
2.2.1 Lex	xicon-Based Approach	30
2.2.2 Ma	chine Learning Approach	30
2.2.2.1	CNN Working with Character-Level Features	34
2.2.2.2	CNN Working with Word-Level Features	38
2.2.2.3	CNN Working with Both Character-Level and Word-Level	el
Features	43	
Chapter 3: A C	CNN Based Emotion Detection Model	51
3.1 Model A	Architecture	51
3.1.1 Tex	xt Pre-processing	53
3.1.1.1	Filtering Sentences	54
3.1.1.2	Tokenizing Sentences	54
3.1.1.3	Indexing Sentences	54
3.2 CNN St	reams	55
3.2.1 Em	bedding Layer	55
3.2.1.1	Randomly Initialized Word Embeddings	57
3.2.1.2	Pretrained Word Embeddings	58
3.2.2 Cor	nvolutional and Max-pooling Layers	58
3.3 Fully co	onnected layer	63
3.4 An Illus	strative Example of a Sentence-level Execution	66

Chapter 4:	Experimental Results and Model Evaluation	77
4.1 Da	taset	77
4.2 Ex	periments	81
4.2.1	Evaluation metrics	81
4.2.2	Model Settings	83
4.2.1	.1 Randomly Initialized Word Embeddings	84
4.2.1	.2 Pre-trained Glove Word Embeddings	85
4.2.1	.3 Pre-trained Word2vec Word Embeddings	85
4.2.1	.4 Pre-trained fast-Text Word Embeddings	85
4.2.3	Results and Discussion	86
4.2.3	7.1 Training and Validation Results	86
4.2.3	3.2 Testing Results	96
Chapter 5:	Conclusion and Future Work	102
5.1 Co	nclusion	102
5.2 Fut	ture work	103
Appendix A	A: Twitter Sentiment Analysis Datasets	104
References		107

List of Figures

Figure 2-1 Flow Chart of Traditional Technique for Programming	13
Figure 2-2 Flow Chart of Machine Learning Technique for Programming	14
Figure 2-3 Training Phase in Machine Learning in Text Classification	16
Figure 2-4 Testing Phase in Machine Learning in Text Classification	17
Figure 2-5 The Artificial Neuron	19
Figure 2-6 The Multilayer Neural Network Structure	21
Figure 2-7 The Basic Architecture of a CNN	23
Figure 2-8 How a Kernel of Convolutional Layer Is Applied on Input to Ge	enerate
a Feature Map	24
Figure 2-9 Machine Learning without Transfer Learning	28
Figure 2-10 Transfer Learning	29
Figure 2-11 A Convolutional Neural Network Model	35
Figure 2-12 A Deep Learning Model applied on An Example Sentence	37
Figure 2-13 A Model Architecture with Two Channels for an Example Sen	tence
	39
Figure 2-14 A Deep Learning Architecture For Sentiment Classification	42
Figure 2-15 An Overview of a Deep Learning System	46
Figure 3-1 The Main Phases of The Proposed Emotion Detection Model	52
Figure 3-2 The Block Diagram of The Model	53
Figure 3-3 Text Pre-processing	53
Figure 3-4 The Embedding Layer	57
Figure 3-5 A Single CNN Stream Convolutional and Max-pooling Layers .	59
Figure 3-6 ReLU Activation Function	60
Figure 3-7 Convolutional and Max-pooling Layers of The First CNN Stream	m63
Figure 3-8 The Sigmoid Fully Connected Layer	64
Figure 3-9 Sigmoid Activation Function	64
Figure 3-10 Dropout Neural Net Model.	65
Figure 3-11 First CNN Stream Filter of Size [3*300] Strides by 1 on The	
Sentence Matrix	72

Figure 3-12 Second CNN Stream Filter of size [5*300] Strides by 1 on The
Sentence Matrix73
Figure 3-13 Third CNN Stream Filter of size [7*300] Strides by 1 on The
Sentence Matrix74
Figure 3-14 Illustration on How the Sentence is Processed through the CNN
Streams75
Figure 4-1 Training Vs Validation Accuracy Graph Using Random Word
Embeddings87
Figure 4-2 Training Vs Validation Loss Graph Using Random Word
Embeddings87
Figure 4-3 Training Vs Validation Accuracy Graph Using Glove Wikipedia Word
Embeddings89
Figure 4-4 Training Vs Validation Loss Graph Using Glove Wikipedia Word
Embeddings89
Figure 4-5 Training Vs Validation Accuracy Graph Using Glove Twitter Word
Embeddings90
Figure 4-6 Training Vs Validation Loss Graph Using Glove Twitter Word
Embeddings90
Figure 4-7 Training Vs Validation Loss Graph Using fastText Wikipedia Word
Embeddings91
Figure 4-8 Training Vs Validation Loss Graph Using fastText Wikipedia Word
Embeddings91
Figure 4-9 Training Vs Validation Loss Graph Using fastText Crawl Wikipedia
Word Embeddings92
Figure 4-10 Training Vs Validation Loss Graph Using fastText Crawl Wikipedia
Word Embeddings92
Figure 4-11 Training Vs Validation Loss Graph Using Word2Vec Word
Embeddings93
Figure 4-12 Training Vs Validation Loss Graph Using Word2Vec Word
Embeddings