

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

UTILIZATION OF SLUDGE RESULTED FROM CHLORINE INDUSTRY IN WASTWATER TREATMENT

(Environmental Chemistry Study)

Submitted By

Alaa Ibrahim Mohamed Said

B.Sc. of Chemistry, Faculty of science, Ain Shams Universty, (1997)

A Thesis Submitted in partial fulfillment

Of

The Requirement the Master Degree

In

Environmental Sciences Chemistry

Department Of Environmental Basic Sciences
Inistitute Of Environmental Studies And Research
Ain Shams University

Cairo - 2020

APPROVAL SHEET

UTILIZATION OF SLUDGE RESULTED FROM CHLORINE INDUSTRY IN WASTWATER TREATMENT

(Environmental Chemistry Study)

Submitted By

Alaa Ibrahim Mohamed Said

B.Sc. of Chemistry, Faculty of science, Ain Shams Universty, (1997)

A Thesis Submitted in partial fulfillment

Of

The Requirement For the Master Degree

In

Environmental Sciences Chemistry

This Thesis Was Discused And Approved By:

The Committee Signature

1-Prof. Dr. Fayza Sayed Mohamed Hashem-----

Professor of Physical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

2- Prof. Dr. Taha Abd El Azzem Mohamed-----

Prof. of Environmental Chemistry, Department of Environmental Basic Sciences, Inistitute of Environmental Studies & Research for Ain Shams Universty

3- Dr. Engineer. Hesham Ramzy Tantawy-----

Associate prof. of chemical engineering Militry Technical Collage

2020

UTILIZATION OF SLUDGE RESULTED FROM CHLORINE INDUSTRY IN WASTWATER TREATMENT

(Environmental Chemistry Study)

Submitted By

Alaa Ibrahim Mohamed Said

B.Sc. of Chemistry, Faculty of science, Ain Shams Universty, (1997)

A Thesis Submitted in partial fulfillment

Of

The Requirement For the Master Degree

In

Environmental Sciences Chemistry

Under The Supervision Of:

1-Prof. Dr. Fayza Sayed Mohamed Hashem-----

Professor of Physical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

2- Dr. Engineer. Sherif Farg Mohamed-----

Doctor Engineer (chemical engineering)

Manager of Analytical Chemistry Laboratory, Main laboratories, Ministry of Defense

ACKNOWLEDGEMENT

First of all, I had great thank from the bottom of my heart to **Allah** for giving me the opportunity and the strength to accomplish this work.

I want to express my deep thanks and great gratitude to **Prof.Dr. Fayza Sayed Mohamed Hashem** professor of physical chemistry, Faculty of Science, Ain Shams University, for her valuable supervision, advice, unlimited support and constructive discussion and suggestions throughout the thesis.

I would like to express my deep gratitude to **Dr**. **Sherif Mohamed Farag** Doctor Engineer (chemical engineering) Manager of Analytical Chemistry Laboratory, Main laboratories, Ministry of Defense, for his valuable supervision, advice, unlimited support and constructive suggestions throughout the thesis.

I owe my great thanks and sincere love to my wife for giving me the positive energy, support and encouragement which give me the power throughout my work to finish it.

Alaa Ibrahim Mohamed Said

ABSTRACT

The purpose of this study is to check and investigate the efficiency of using the burnt brine sludge (BBS), and the non burnt brine sludge (NBBS) which resulted from chlorine industry by the chemical processing of the ultra pure brine (295-300 gm/l) which is decomposes in the electrolytic cell as low-cost solid waste adsorbents materials for the removal of the heavy metal ions like lead, cadmium and copper ions from aqueous solution. The physicochemical characteristics of each solid waste are checked and investigated by using X- ray diffraction (XRD), X-ray fluorescence (XRF), N2 adsorption technique and scanning electron microscopy (SEM). Beside batch experiments are carried out as effect of contact time, initial pH of solution, initial heavy metal ion concentrations, adsorbent sludge dose and competition of metal ions on the adsorption of heavy metal ions was studied. Removal efficiency at optimum conditions was approximately 100% for Pb^{+2} , Cd^{+2} and Cu^{+2} (28.7, 11.2, 8.9 mg/g respectively) by using burnt brine sludge (BBS) and from 90 - 100 % for Pb^{+2} , Cd^{+2} and $\,{\rm Cu}^{+2}$ and from 70 - 90 % , 75 - 98 % (125.2, 18.63, 8.09 mg/g respectively) for non burnt brine sludge (NBBS). The kinetics description of adsorption for ions was followed this model (pseudosecond-order) based on amounts of heavy metal ions sorbed at different time intervals.

Keywords: Chlorine industry sludge, heavy metals, wastewater, sludge, low cost adsorbent.

List of contents

CONTENTS	Page
IA.Introduction	1
IA.1. Chlorine Uses And Manufacture	1
IA.1.1. Chlorine Uses	1
IA.1.2. Chlorine Manufacture	2
IA.2. Brine Treatment	2
IA.3. Chlorine Treatment	3
IA.3.1. Chlorine Cooling	3
IA.3.2. Chlorine Drying And Liquifaction	3
IA.4. Chlorine Production By Electrolytic Cell	6
IA.4.1. Chlorine Manufaction	6
IA.4.2. Cell Development	6
IA.4.2.1. Diaphragm Cell	7
IA.4.2.2. Mercury Cell	8
IA.4.2.3. Membrane Cell	9
IA.4.2.3.1. Membrane Cell (First Phase)	9
IA.4.2.3.2. Membrane Cell (Second Phase)	9
IA.4.2.3.3. Membrane Cell (Third Phase)	9
IA.5. Design and Selection Of Cells	10
IA.5.1. Monopolar Cell	12
IA.5.2. Bipolar Cell	12
IA.6. Pollution Of Wastewater by Heavy metal	13
IA.6.1. Lead Metal	15
IA.6.2. Cadmium Metal	16
IA.6.3. Copper Metal	17
IA.7.Different Methods For The Removal Of the Heavy Metal ions	18

List of contents

Title	
IA.7.1.Removal Of The Heavy Metal Ions By Chemical Method	19
IA.7.2. Removal Of The Heavy Metal Ions By Adsorption Method	21
IA.7.3. Removal Of The Heavy Metal Ions By Silicate Mineral	22
IA.7.4. Removal Of The Heavy Metal Ions By Sludge	
IA.7.5. Removal Of The Heavy Metal Ions By Other Solid Wastes	37
IB. Object Of Investigation	47
IIA. Materials and Methods	50
IIA.1. Solid Waste Materials	50
IIA.1.1. Non Burnt Brine Sludge (NBBS)	50
IIA.1.2. Burnt Brine Sludge (BBS)	50
IIA.2. Chemicals	52
IIB. Experimental Technique	54
IIB.1. Adsorption Experiment	54
IIB.1.1. The Effect Of Contact Time	54
IIB.1.2. The Effect Of pH	54
IIB.1.3. The Effect Of Adsorbent Mass	55
IIB.1.4. The Effect Of Competative Metal Concenteration	
IIB.1.5. The Effect Of Metal Concenteration	55
IIB.1.6. The Leaching Effect Of Metal Concenteration	56
IIB.2. Methods Of Physicochemical Analysis	56
IIB.2.1. X-Ray Diffraction (XRD) Analysis	57
IIB.2.1. X-Ray Florescence (XRF) Analysis	57

List of content

Title	Page
IIB.2.3. The Textural Properties	57
IIB.2.4. Scanning Electron Microscope (SEM)	57
IIB.2.3. Inductive Coupling Plasma (ICP) Analysis	58
IIB.2.3. Hydrogen Ions Concenteration pH	
IIIA. Results And Discussion	
IIIA. The Removal Efficeincy Of Heavy Metal Ions In Wastewater By Non Burnt Brine Sludge (NBBS)	60
IIIA. Characterization Of Wastewater Treatment Sludge	60
IIIA.1.1. X-Ray Diffraction (XRD) Analysis	60
IIIA.1.2. The Main Surface And Characteristics Of Pore Structure Of Non Activated Brine Sludge (NBBS)	62
IIIA.1.3. Morphology And Microstructure Of Non Burnt Brine Sludge (NBBS)	66
IIIA.2. The Removal Proparties Of Non Burnt Brine Sludge (NBBS)	69
IIIA.2.1. The Effect Of Contact Time	69
IIIA.2.2. The Effect Of pH	72
IIIA.2.3. The Effect Of Adsorent Mass	76
IIIA.2.4. Effect Of Intial Metal Concenteration	78
IIIA.2.5. The Leaching Effect Of Intial Metal Ions Concenteration	78

List of content

Title	Page
IIIA.2.6. The Effect Of Competative Metal Ions Concenteration	
IIIA.3. Kinetics Models	81
IIIA.3.1. The Pesudo-First-Order Model	82
IIIA.3.2. The Pesudo-Second-Order Model	
IIIA.4. Equilibrium Isotherms	88
IIIA.4.1. The Langmuir Isotherm Model	88
IIIA.4.1. The Freundlich Isotherm Model	92
IIIA.5. Mechanism Of Adsorption	94
IIIB. Removal Efficeincy Of The Heavy Metal Ions In Wastewater By Burnt Brine Sludge (BBS)	
IIIB.1. Characterization Of Burnt Brine Sludge (BBS)	95
IIIB.1.1. X-Ray Diffraction (XRD) Analysis	95
IIIB.1.2. The Main Surface And Characteristics Of Pore Structure Of Burnt Brine Sludge (BBS)	
IIIB.1.3. Morphology And Microstructure Of Burnt Brine Sludge (BBS)	103
IIIB.2. The Removal Proparties Of Burnt Brine Sludge (BBS)	107
IIIB.2.1. The Effect Of Contact Time	107
IIIB.2.2. The Effect Of pH	111

List of content

Title	Page	
IIIB.2.3. Effect Of BBS Adsorent Mass		
IIB.2.4. Leaching Effect Of Intial Metal Ions Concenteration		
IIB.2.3. Effect Of Competative Metal Ions Concenteration		
IIB.3. Kinetic Model		
IIIB.3.1. The Pesudo-First-Order Model		
IIIB.3.2. The Pesudo-Second-Order Model	125	
IIIB.4. Equilibrium Isotherms	127	
IIIB.4.1. The Langmuir Isotherm Model	127	
IIIB.4.2. The Freundlich Isotherm Model	132	
IIIA.5. Mechanism Of Adsorption		
IVA. Summary And Conclusions		
IVA.2.1. Summary		
IVA.2.2. Conclusions	139	
IVA.2.3. Non Burnt Brine Sludge (NBBS)	139	
IVA.2.4. Burnt Brine Sludge (BBS)	142	
IVA.2.5. General Coclusions		
V. References		
VI. Arabic Summary	160	
Researcher notes		

List Of Tables

Table	Title	Page
Table (1):	Chemical Oxide Composition Of Solid Waste Material	53
Table (2):	Surface And Pore Structure Of The (NBBS) After The Treatment At Different Temperature	66
Table (3):	Effect Of Contact Time On the NBBS Removal Percent Of The Heavy Metal	71
Table (4):	PH Values Of The Heavy Metal Ions Solutions During Contact Time	72
Table (5):	Effect Of Intial pH On the NBBS Removal Percent Of The Heavy Metal Ions	74
Table (6):	The Final pH Solution Of The Heavy Metal Ions At Different Intial pH	75
Table (7):	Effect Of NBBS Adsorbent Mass On The Removal Percent Of The Heavy Metal	77
Table (8):	Leaching Effect On The Adsorption Capacity For The Heavy Metal Ions Conc <u>n</u> On NBBS	78
Table (9):	Removal Percent Of (Pb ⁺² , Cd ⁺² , Cu ⁺²) in Binary And Tertiary Mixture	81
Table (10):	Kinetic Parameters For The Adsorption Of (Pb ⁺² , Cd ⁺² , Cu ⁺²) Ions Onto NBBS	85
Table (11):	Langmuir And Ferundlich Sorption Isotherm Parameters Of (Pb ⁺² , Cd ⁺² , Cu ⁺²) Ions On NBBS Sample	90
Table (12):	Surface And Pore Structure Of The (BBS) After The Treatment At Different Temperature	101
Table (13):	Effect Of Contact Time On the BBS Removal Percent Of The Heavy Metal	109