

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

PRODUCTION OF BIO-PRESERVATIVES FROM DAIRY BY-PRODUCTS

By

RADWA ELMAGHRABY NOURELDEIN

B.Sc. Agric. Sc. (Biochemistry), Fac., Agric., Cairo University, 2008.

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUCTION OF BIO-PRESERVATIVES FROM DAIRY BY-PRODUCTS

By

RADWA ELMAGHRABY NOURELDEIN

B.Sc. Agric. Sc. (Biochemistry), Fac., Agric., Cairo University, 2008.

This thesis for M.SC. degree has been approved by:

Dr. Hamed Elsayed Abo Ali
Prof of Agric. Microbiology, Fac. Agric., Benha University

Dr. Elsayed Ahmed Saleh
Prof Emeritus of Agric. Microbiology, Fac. Agric., Ain Shams University

Dr. Abdel-Mohsen Ahmed Refaat
Prof Emeritus of Agric. Microbiology, Fac. Agric., Ain Shams University

Date of Examination: / / 2020

PRODUCTION OF BIO-PRESERVATIVES FROM DAIRY BY-PRODUCTS

By

RADWA ELMAGHRABY NOURELDEIN

B.Sc. Agric. Sc. (Biochemistry), Fac., Agric., Cairo University, 2008.

Under the Supervision of:

Dr. Mahmoud Mohamed Zaki (Late)

Prof Emeritus of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. Agric., Ain Shams University

Dr. Abdel-Mohsen Ahmed Refaat

Prof Emeritus of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. Agric., Ain Shams University

Dr. Ahmed Farid Abdel-Salam

Head Researches of Microbiology, Dept. of Regional Center for Food and Feed, Agricultural Research Center

ABSTRACT

The present study was designed to evaluate sweet whey low-cost by- product of dairy manufacture as a substrate for the selection of lactic acid bacteria (LAB) with proven antibacterial activity to be used as biopreservatives for fermented dairy product.

A number of 32 isolates were obtained from raw cow milk (16 isolates), goat milk (9 isolates) and cottage cheese (7 isolates) using the specific De Man-Regosa-Sharp medium (MRS) for the isolation of LAB, these isolates were identified up to genus as strains of *Lactobacillus* spp.

Sweet whey (sw) proved to be suitable medium alternative to the expensive commercial MRS medium for the growth and production of antibacterial substances by our *Lactobacillus* isolates. Therefore, these isolates were used throughout the present work.

Antibacterial activities of *Lactobacillus* isolates grown on sweet whey broth were tested against seven pathogens using disc diffusion assay. The majority of isolates (24 isolates) showed maximum activities antagonizing all tested Gram negative and positive pathogens. These isolates were also good acid producers causing a drop in pH of cell free supernatants (CFS) to a range between 3.7 to 4.9.

Furthermore, only five of them showed high residual antibacterial activities after pasteurization. Isolate number C7 isolated from raw cow milk exhibited the broadest antibacterial spectrum, strongest activities, and showed highest residual activities after pasteurization against all tested pathogens, and was completely identified up to species as strain of *Lactobacillus brevis* 200217-029 and described as heterofermentative to produce CO₂ and variety of organic acids were propionic acid, lactic acid, citric acid, formic acid, sorbic acid and butyric acid.

Cell free supernatant of this strain exhibited strong heat-stability, remained active at pH 3.7, tolerated salt stress of 6.5% NaCl, unaffected in the presence of solvents and detergents. These characteristics together

with its strong antibacterial activity against Gram negative and positive foodborne organisms and pathogens recommend its further use as a preservatives of food products.

Keywords: *Lactobacillus* spp., Dairy products, Sweet whey, Phenotypic identification, Bio-preservatives, Pathogenic bacteria, Antibacterial activity, Disc diffusion method, 16s DNA gene, High performance liquid chromatography, Stability, Taguchi design, Central composite design.

ACKNOWLEDGMENT

First of all I would like to thank **Allah** for helping and ability to do this thesis.

I would like to express my sincere gratitude to my advisor **Dr. Mahmoud Mohammed Zaki** (**Late**) Prof Emeritus of Agric.

Microbiology Department, Faculty of Agriculture, Ain Shams University; for his supervision and continuous support of my study, motivation, his helping of writing this thesis and immense knowledge. His guidance helped me in all the time. The work presented in this thesis would not have been possible without his guidance.

I would like to express my sincere gratefulness to **Dr. Abdel-Mohsen Ahmed Refaat** Prof Emeritus of Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University; for his supervision and continuous support of my study, motivation, and immense knowledge. His guidance helped me in all the time. I was also lucky to enjoy his advice, encouragement and interest throughout the work of thesis.

I would also like to thank **Dr. Ahmed Farid Abdel- Salam** Head Researches of Microbiology, Regional Center for Food and Feed, Agriculture Research Center; for his supervision, and his helping of providing some material support and making some chemical analysis in Agriculture Research Center.

I am also thankful to **Dr. Khalid Abdel- Fatah Eldougdoug** Prof of Virology, Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University; for his helping all the time, his encouragement for me, and his continuous with me to finish this thesis.

I am also thankful to **Dr. Shimaa Abdel-Raouf Amin** Associate Professor of Microbiology, Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University; for her helping all the time, her effort,

her encouragement, intellectual and practical guidance that were indispensible to this work, and provided some the material support.

I would also like to **Dr. Khadija Ahmed Abo-Taleb** Prof of Microbiology, Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University; for her helping in the Statistical Analysis of this thesis, her encouragement for me, and her support.

Many thanks to all colleagues and all employees of Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University; for their support.

I am also so heartfelt gratitude to my husband, my mother, my friends and all my family who encouraged me throughout the time of my research. This thesis is heartily dedicated to my husband who bore with me a lot of trouble to supreme heaven.

Finally, I thank all who in one way or another contributed in the completion of this thesis.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
ABBREVIATIONS	VIII
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	4
3. MATERIALS AND METHODS	15
3.1. MATERIALS	15
3.1.1. Chemicals used	15
3.1.2. Apparatus	15
3.1.3. Media used	15
3.1.3.1. De Man-Regosa-Sharp (MRS) broth and agar	16
3.1.3. 2. Nutrient agar (NA)	16
3.1.3.3. Sweet whey (Sw)	17
3.2. METHODS	17
3.2.1. Samples collection	17
3.2.2. Source of pathogenic bacteria	17
3.2.3. Isolation of lactic acid bacteria (LAB)	18
3.2.4. Identification of lactic acid bacteria	18
3.2.4.1. Microscobic test	18
3.2.4.2. Physiological and biochemical tests	18
3.2.5. Analysis of sweet whey powder	19
3.2.5.1. Determination of total protein	19
3.2.5.2. Determination of fat	21
3.2.5.3. Determination of lactose	21
3.2.5.4. Determination of minerals	23
3.2.6. Evaluation of sweet whey as a medium for	
Lactobacillus growth.	23
3.2.6.1. Bacterial growth in sweet whey	24
3.2.6.2. Preparation of cell free supernatant (CFS) <i>Lactobacillus</i>	
isolates.	24

	Page
3.2.6.3. Disc diffusion method	24
3.2.7. Screening for antibacterial activity of <i>Lactobacillus</i> spp.	25
3.2.8. Characterization of the inhibitory substances.	25
3.2.8.1. Antibacterial effect of organic acids in CFS.	25
3.2.8.2. Antibacterial activity affected by H ₂ O ₂ .	25
3.2.9. Antibacterial activity of pasteurized CFS of the isolates.	26
3.2.10. Identification of the most active <i>Lactobacillus</i> isolate by	
16s DNA gene.	26
3.2.11. Identification of pioneer <i>Lactobacillus</i> spp. Antibacterial	
compounds by using High performance liquid	
chromatography (HPLC).	27
3.2.12. Stability of <i>Lactobacillus</i> inhibitory activity	28
3.2.12.1. Effect of pH levels	28
3.2.12.2. Effect of temperature treatment	28
3.2.12.3. Effect of sodium chloride (NaCl)	29
3.2.12.4. Effect of organic solvents and surfactants	29
3.2.13.Response surface methodology (RSM) for optimization of	
pioneer Lactobacillus spp. growth	29
3.2.13.1. Screening of most significant variables for biomass	
production using Taguchi design	29
3.2.13.2. Central composite design (CCD).	31
4. RESULTS AND DISCUSSION	34
4.1. Isolation of lactic acid bacteria (LAB).	34
4.2. Identification of lactic acid bacteria isolates	34
4.3. Analysis of sweet whey.	37
4.4. Applied sweet whey medium for the production of antibacterial	
substances.	38
4.5. Detection of antibacterial activity of <i>Lactobacillus</i> spp.	39
4.6. Characterization of inhibitory substances.	43
4.6.1. Organic acids production	43
4.6.2. Catalase production	43

	Page
4.7. Selection the most tolerant <i>Lactobacillus</i> isolates for HTST	
pasteurization (72° / 15 sec) against pathogenic bacteria.	47
4.8. Identification of pioneer <i>Lactobacillus</i> isolate (C7) by 16s	
DNA gene.	52
4.9. Antibacterial substrate production by Lactobacillus brevis	
200217-029.	58
4.10. Stability of antibacterial activity by Lactobacillus brevis	
200217-029 under different conditions.	60
4.10.1. Effect of pH	60
4.10.2. Effect of temperature	66
4.10.3. Effect of sodium chloride (NaCl)	68
4.10.4. Effect of organic solvents and surfactants	70
4.11. Production of Biomass.	74
4.11.1.Optimization of Lactobacillus brevis 200217-029 growth	
by Response Surface Methodology (RSM).	75
4.11.1.1. Screening of the most significant cell dry weight	
parameters using Taguchi	75
4.11.1.2. Second design the Central composite design (CCD).	79
5. SUMMARY AND CONCLUSION	87
6. REFERENCES	90
ARABIC SUMMARY	